Skip to main content
Log in

Entanglement swapping via quantum zeno dynamics in noisy environment

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum entanglement plays a key role in quantum computing. Enormous theoretical progress has been made, but practical implementation of protocols is still blocked by technical obstacles. In standard models, the used circuits require controlled gates and entangled qubits separated by limited distances. As solution, quantum swapping via Zeno dynamics has been proposed. In this paper, we study the case of noisy environments by introducing Werner states as quantum channels. For this purpose, our platform is enriched by a specific class for parametric mixed states processing. The implementation details are presented, and simulation results of the entanglement swapping protocol are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Our manuscript has not associated data.

References

  1. Mermin, N.D.: Quantum Computer Science: An Introduction. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  3. Bennett, C.H., Brassard, G., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unkown quantum state via dual classical and EPR channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  4. Sun, Y.R., Xiang, N., Dou, Z., Xu, G., Chen, X.B., Yang, Y.X.: A universal protocol for controlled bidirectional quantum state transmission. Quantum Inf. Process. 18, 281 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  5. Sun, S., Zhang, H.: Quantum double-direction cyclic controlled communication via a thirteen-qubit entangled state. Quantum Inf. Process. 19, 120 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  6. Eleni, D., Hoi-Kwong, L., Bing, Q., Zhiliang, Y.: Practical challenges in quantum key distribution. NPJ Quantum Inf. 2, 16025 (2016)

    Article  Google Scholar 

  7. Xu, L., Xin, Y., Rong, X., Heqing, W., Hao, L., Zhen, W., Lixing, Y., Xue, F., Fang, L., Kaiyu, C., Yidong, H., Wei Zhang, Z.: An entanglement-based quantum vetwork based on symmetric dispersive optics quantum key distribution. APL Photonics 5, 7 (2020)

    Google Scholar 

  8. Zhihui, L., Duo, H., Chengji, L., Feifei, G.: The phase matching quantum key distribution protocol with 3-state systems. Quantum Inf. Process. 20, 11 (2021)

    Article  MathSciNet  Google Scholar 

  9. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W-states. Phys. Rev. A 74, 062320 (2006)

    Article  ADS  Google Scholar 

  10. Moreno, G., Nery, R., Gois, C., Rabelo, R., Chaves, R.: Semi-device-independent certification of entanglement in superdense coding. Phys. Rev. A 103, 871 (2021)

    Article  MathSciNet  Google Scholar 

  11. Long, Y., Zhang, C., Sun, Z.: Standard (3, 5)-threshold quantum secret sharing by maximally entangled 6-qubit states. Scientif. Rep. 11, 22649 (2021)

    Article  ADS  CAS  Google Scholar 

  12. Tsai, C.W., Yang, C.W., Lin, J.: Multiparty mediated quantum secret sharing protocol. Quantum Inf. Process. 21, 63 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  13. Wang, X.B., You, Q., Nori, F.: Quantum entanglement via two-qubit quantum Zeno dynamics. Phys. Rev. A 77, 062339 (2008)

    Article  ADS  Google Scholar 

  14. Ozaydin, F., Bayindir, C., Altintas, A.A., Yesilyurt, C.: Nonlocal activation of bound entanglement via local quantum Zeno dynamics. Phys. Rev. A 105, 022439 (2022)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Bayrakci, V., Ozaydin, F.: Quantum Zeno repeaters. Sci. Rep. 12, 15302 (2022)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  CAS  Google Scholar 

  17. Khalfaoui, K., Boudjedaa, T., Kerkouche, E.H.: Automatic design of quantum circuits: generation of quantum teleportation protocols. Quantum Inf. Process. 20, 283 (2021)

    Article  MathSciNet  Google Scholar 

  18. Khalfaoui, K., Kerkouche, E.H., Boudjedaa, T., Chaoui, A.: Optimized search for complex protocols based on entanglement detection. Quantum Inf. Process. 21(6), 226 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  19. Khalfaoui, K., Kerkouche, E.H., Boudjedaa, T., Chaoui, A.: Optimized exploration of quantum circuits space based on sub-circuits equivalences. Quantum Inf. Process. 22(1), 71 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  20. Horodecki, R., Horodecki, M., Horodecki, P.: Teleportation, Bell’s inequalities and inseparability. Phys. Lett. A 222(1–2), 21–25 (1996)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  21. Peres, A.: Separability Criterion for Density Matrices. Phys. Rev. Lett. 77(8), 1413–1415 (1996)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  22. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1–2), 1–8 (1996)

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for the detailed comments and suggestions. Their recommendations have widely contributed to the enrichment of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Khalfaoui.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalfaoui, K., Kerkouche, E.H., Boudjedaa, T. et al. Entanglement swapping via quantum zeno dynamics in noisy environment. Quantum Inf Process 23, 43 (2024). https://doi.org/10.1007/s11128-023-04244-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04244-2

Keywords

Navigation