Skip to main content
Log in

Multi-party semiquantum key distribution with multi-qubit GHZ states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we first put forward a four-party semiquantum key distribution (SQKD) scheme by using three-qubit GHZ states, which can establish three different private keys shared by one quantum user and three semiquantum users simultaneously. It doesn’t need a third party, and employs three-qubit GHZ states as the initial quantum resource. It requires the quantum user to perform the \(Z\) basis (i.e.,\(\left\{ {\left| 0 \right\rangle ,\left| 1 \right\rangle } \right\}\)) measurements and the GHZ basis measurements, and needs the semiquantum users to implement the \(Z\) basis measurements. It adopts none of Pauli operations, Hadamard gate or quantum entanglement swapping, and doesn’t require the semiquantum users to use any quantum memory. Detailed security proof shows that this four-party SQKD scheme is secure against different kinds of attack from an outside eavesdropper. Finally, we generalize the four-party SQKD scheme into the counterpart of \(M + 1\)-party.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp.175–179 (1984)

  3. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  4. Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)

    Article  ADS  Google Scholar 

  5. Yu, K.F., Yang, C.W., Liao, C.H., Hwang, T.: Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 13, 1457 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  6. Krawec, W.O.: Restricted attacks on semi-quantum key distribution protocols. Quantum Inf. Process. 13, 2417 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  7. Zou, X.F., Qiu, D.W., Zhang, S.Y., Mateus, P.: Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf. Process. 14, 2981 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  8. Krawec, W.O.: Mediated semi-quantum key distribution. Phys. Rev. A 91(3), 032323 (2015)

    Article  ADS  Google Scholar 

  9. Krawec, W.O.: Security of a semi-quantum protocol where reflections contribute to the secret key. Quantum Inf. Process. 15, 206 (2016)

    Article  MathSciNet  Google Scholar 

  10. Zhu, K.N., Zhou, N.R., Wang, Y.Q., Wen, X.J.: Semi-quantum key distribution protocols with GHZ states. Int. J. Theor. Phys. 57, 3621 (2018)

    Article  MathSciNet  Google Scholar 

  11. He, J.J., Li, Q., Wu, C.H., Chan, W.H., Zhang, S.Y.: Measurement-device-independent semiquantum key distribution. Int. J. Quantum Inf. 16(2), 1850012 (2018)

    Article  Google Scholar 

  12. Amer, O., Krawec, W.O.: Semiquantum key distribution with high quantum noise tolerance. Phys. Rev. A 100, 022319 (2019)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  13. Chen, L.Y., Gong, L.H., Zhou, N.R.: Two semi-quantum key distribution protocols with G-like states. Int. J. Theor. Phys. 59, 1884 (2020)

    Article  MathSciNet  Google Scholar 

  14. Ye, T.Y., Li, H.K., Hu, J.L.: Semi-quantum key distribution with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 59(9), 2807–2815 (2020)

    Article  Google Scholar 

  15. Ye, T.Y., Geng, M.J., Xu, T.J., Chen, Y.: Efficient semiquantum key distribution based on single photons in both polarization and spatial-mode degrees of freedom. Quantum Inf. Process. 21, 123 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  16. Han, S.Y., Huang, Y.T., Mi, S., et al.: Proof-of-principle demonstration of semi-quantum key distribution based on the Mirror protocol. EPJ Quantum Technol. 8, 28 (2021)

    Article  Google Scholar 

  17. Zhou, Y.H., Qin, S.F., Shi, W.M., Yang, Y.G.: Measurement-device-independent continuous variable semi-quantum key distribution protocol. Quantum Inf. Process. 21, 303 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  18. Dong, S., Mi, S., Hou, Q.C.: Decoy state semi-quantum key distribution. EPJ Quantum Technol. 10, 18 (2023)

    Article  Google Scholar 

  19. Zhang, X.Z., Gong, W.G., Tan, Y.G., Ren, Z.Z., Guo, X.T.: Quantum key distribution series network protocol with M-classical Bobs. Chin. Phys. B 18(6), 2143–2148 (2009)

    Article  ADS  Google Scholar 

  20. Zhou, N.R., Zhu, K.N., Zou, X.F.: Multi-party semi-quantum key distribution protocol with four-particle Cluster states. Ann. Phys. 531(8), 1800520 (2019)

    Article  MathSciNet  Google Scholar 

  21. Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)

    Article  ADS  Google Scholar 

  22. Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  23. Li, L.Z., Qiu, D.W., Mateus, P.: Quantum secret sharing with classical Bobs. J Phys A: Math and Theor 46(4), 045304 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  24. Li, C.Y., Ye, C.Q., Tian, Y., Chen, X.B., Li, J.: Cluster-state-based quantum secret sharing for users with different abilities. Quantum Inf. Process. 20(12), 1–14 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  25. Chen, Y., Ye, T.Y.: Semiquantum secret sharing by using χ-type states. Eur. Phys. J. Plus 137(12), 1331 (2022)

    Article  Google Scholar 

  26. Chou, W.H., Hwang, T., Gu, J.: Semi-quantum private comparison protocol under an almost-dishonest third party. https://arxiv.org/abs/1607.07961 (2016)

  27. Ye, T.Y., Ye, C.Q.: Measure-resend semi-quantum private comparison without entanglement. Int. J. Theor. Phys. 57(12), 3819–3834 (2018)

    Article  MathSciNet  Google Scholar 

  28. Ye, T.Y., Lian, J.Y.: A novel multi-party semiquantum private comparison protocol of size relationship with d-dimensional single-particle states. Physica A 611, 128424 (2023)

    Article  MathSciNet  Google Scholar 

  29. Lian, J.Y., Li, X., Ye, T.Y.: Multi-party semiquantum private comparison of size relationship with d-dimensional Bell states. EPJ Quantum Technol. 10, 10 (2023)

    Article  Google Scholar 

  30. Gong, L.H., Chen, Z.Y., Qin, L.G., Huang, J.H.: Robust multi-party semi-quantum private comparison protocols with decoherence-free states against collective noises. Adv. Quantum Technol. 6(8), 2300097 (2023)

    Article  Google Scholar 

  31. Zhao, X.Q., Chen, H.Y., Wang, Y.Q., Zhou, N.R.: Semi-quantum bi-signature scheme based on W states. Int. J. Theor. Phys. 58, 3239 (2019)

    Article  MathSciNet  Google Scholar 

  32. Xia, C.Y., Li, H., Hu, J.: A semi-quantum blind signature protocol based on five-particle GHZ state. Eur. Phys. J. Plus 136, 14 (2021)

    Google Scholar 

  33. Liu, W.J., Chen, Z.Y., Ji, S., Wang, H.B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56, 3164 (2017)

    Article  MathSciNet  Google Scholar 

  34. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  35. Zhou, N.R., Zhu, K.N., Wang, Y.Q.: Three-party semi-quantum key agreement protocol. Int. J. Theor. Phys. 59, 663–676 (2020)

    Article  MathSciNet  Google Scholar 

  36. Xu, T.J., Chen, Y., Geng, M.J., Ye, T.Y.: Single-state multi-party semiquantum key agreement protocol based on multi-particle GHZ entangled states. Quantum Inf. Process. 21(7), 266 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  37. Ye, T.Y., Ye, C.Q.: Semi-quantum dialogue based on single photons. Int. J. Theor. Phys. 57(5), 1440 (2018)

    Article  MathSciNet  Google Scholar 

  38. Pan, H.M.: Semi-quantum dialogue with Bell entangled states. Int. J. Theor. Phys. 59(5), 1364 (2020)

    Article  MathSciNet  Google Scholar 

  39. Zhou, R.G., Zhang, X.X., Li, F.X.: Three-party semi-quantum protocol for deterministic secure quantum dialogue based on GHZ states. Quantum Inf. Process. 20, 153 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  40. Zhou, N.R., Zhu, K.N., Bi, W., Gong, L.H.: Semi-quantum identification. Quantum Inf. Process. 18, 197 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  41. Jiang, S.Q., Zhou, R.G., Hu, W.W.: Semi-quantum mutual identity authentication using Bell states. Int. J. Theor. Phys. 60, 3353 (2021)

    Article  Google Scholar 

  42. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  CAS  ADS  Google Scholar 

  43. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  Google Scholar 

  44. Deng, F.G., Zhou, P., Li, X.H., et al.: Robustness of two-way quantum communication protocols against Trojan horse attack. arXiv: 0508168 (2005)

  45. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  46. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  47. Epping, M., Kampermann, H., Macchiavello, C., Bruß, D.: Multi-partite entanglement can speed up quantum key distribution in networks. New J. Phys. 19, 093012 (2017)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Ming Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, HM. Multi-party semiquantum key distribution with multi-qubit GHZ states. Quantum Inf Process 23, 50 (2024). https://doi.org/10.1007/s11128-024-04264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04264-6

Keywords

Navigation