Abstract
In this paper, we show that the dynamical Casimir effect can be observed in a hybrid cavity optomechanical system. By introducing a two-level atom into the cavity, the atomic transition from an excited state to the ground state can evoke a two-photon process. Our proposal does not require a driving field to induce the dynamical Casimir effect, which is very alternative to previous schemes. Furthermore, we show that when the atom is replaced by an identical atomic ensemble, the system not only can simulate the similar dynamic Casimir effect, but also exist more plentiful physical phenomena, i.e., higher-order resonance. Numerical simulation confirms the validity of our derivation.







Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Schwinger, J.: On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951). https://doi.org/10.1103/PhysRev.82.664
Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976). https://doi.org/10.1103/PhysRevD.14.870
Settineri, A., Macrì, V., Garziano, L., Di Stefano, O., Nori, F., Savasta, S.: Conversion of mechanical noise into correlated photon pairs: dynamical Casimir effect from an incoherent mechanical drive. Phys. Rev. A 100, 022501 (2019). https://doi.org/10.1103/PhysRevA.100.022501
Del Grosso, N.F., Lombardo, F.C., Villar, P.I.: Photon generation via the dynamical Casimir effect in an optomechanical cavity as a closed quantum system. Phys. Rev. A 100, 062516 (2019). https://doi.org/10.1103/PhysRevA.100.062516
Agustí, A., Solano, E., Sabín, C.: Entanglement through qubit motion and the dynamical Casimir effect. Phys. Rev. A 99, 052328 (2019). https://doi.org/10.1103/PhysRevA.99.052328
Ferreri, A., Bruschi, D.E., Wilhelm, F.K., Nori, F., Macrì, V.: Phonon-photon conversion as mechanism for cooling and coherence transfer (2023) arXiv:2312.09837
Kadijani, S.S., Grosso, N.D., Schmidt, T.L., Farias, M.B.: Dynamical Casimir cooling in circuit QED systems (2023) arXiv:2312.09893
Sorge, F.: Gravitational memory of Casimir effect. Phys. Rev. D 108, 104003 (2023). https://doi.org/10.1103/PhysRevD.108.104003
Gorban, M.J., Julius, W.D., Radhakrishnan, R., Cleaver, G.B.: Interference phenomena in the asymmetric dynamical Casimir effect for a single \(\delta -{\delta }{^{\prime }}\) mirror. Phys. Rev. D 108, 096037 (2023). https://doi.org/10.1103/PhysRevD.108.096037
Nakata, K., Suzuki, K.: Magnonic Casimir effect in ferrimagnets. Phys. Rev. Lett. 130, 096702 (2023). https://doi.org/10.1103/PhysRevLett.130.096702
Wilson, C.M., Johansson, G., Pourkabirian, A., Simoen, M., Johansson, J.R., Duty, T., Nori, F., Delsing, P.: Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479(7373), 376–379 (2011). https://doi.org/10.1038/nature10561
Dalvit, D.A.: Shaking photons out of the vacuum. Nature 479(7373), 303–304 (2011). https://doi.org/10.1038/479303a
Lähteenmäki, P., Paraoanu, G., Hassel, J., Hakonen, P.J.: Dynamical Casimir effect in a Josephson metamaterial. Proc. Natl. Acad. Sci. USA 110(11), 4234–4238 (2013). https://doi.org/10.1073/pnas.1212705110
Ning, W., Huang, X.-J., Han, P.-R., Li, H., Deng, H., Yang, Z.-B., Zhong, Z.-R., Xia, Y., Xu, K., Zheng, D., Zheng, S.-B.: Deterministic entanglement swapping in a superconducting circuit. Phys. Rev. Lett. 123, 060502 (2019). https://doi.org/10.1103/PhysRevLett.123.060502
Xu, Z., Gao, X., Bang, J., Jacob, Z., Li, T.: Non-reciprocal energy transfer through the Casimir effect. Nat. Nanotechnol. 17, 148 (2021). https://doi.org/10.1038/s41565-021-01026-8
Xu, Z., Ju, P., Gao, X., Shen, K., Jacob, Z., Li, T.: Observation and control of Casimir effects in a sphere-plate-sphere system. Nat. Commun. 13, 6148 (2022). https://doi.org/10.1038/s41467-022-33915-4
Kienzler, D., Flühmann, C., Negnevitsky, V., Lo, H.-Y., Marinelli, M., Nadlinger, D., Home, J.P.: Observation of quantum interference between separated mechanical oscillator wave packets. Phys. Rev. Lett. 116, 140402 (2016). https://doi.org/10.1103/PhysRevLett.116.140402
Safavi-Naeini, A.H., Alegre, T.M., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature 472(7341), 69–73 (2011). https://doi.org/10.1038/nature09933
Zhong, Z.-R., Chen, L., Sheng, J.-Q., Shen, L.-T., Zheng, S.-B.: Multiphonon-resonance quantum Rabi model and adiabatic passage in a cavity-optomechanical system. Front. Phys. 17, 1–9 (2022). https://doi.org/10.1007/s11467-021-1092-7
Chen, L., An, X.-W., Deng, T.-H., Zhong, Z.-R.: Toward multimode quantum Rabi model in a strong-coupling cavity optomechanical system. Quantum Inf. Process. 21(7), 232 (2022). https://doi.org/10.1007/s11128-022-03575-w
Macrì, V., Ridolfo, A., Di Stefano, O., Kockum, A.F., Nori, F., Savasta, S.: Nonperturbative dynamical Casimir effect in optomechanical systems: vacuum Casimir-Rabi splittings. Phys. Rev. X 8, 011031 (2018). https://doi.org/10.1103/PhysRevX.8.011031
Qin, W., Macrì, V., Miranowicz, A., Savasta, S., Nori, F.: Emission of photon pairs by mechanical stimulation of the squeezed vacuum. Phys. Rev. A 100, 062501 (2019). https://doi.org/10.1103/PhysRevA.100.062501
Long, X., He, W.-T., Zhang, N.-N., Tang, K., Lin, Z., Liu, H., Nie, X., Feng, G., Li, J., Xin, T., Ai, Q., Lu, D.: Entanglement-enhanced quantum metrology in colored noise by quantum zeno effect. Phys. Rev. Lett. 129, 070502 (2022). https://doi.org/10.1103/PhysRevLett.129.070502
He, W.-T., Guang, H.-Y., Li, Z.-Y., Deng, R.-Q., Zhang, N.-N., Zhao, J.-X., Deng, F.-G., Ai, Q.: Quantum metrology with one auxiliary particle in a correlated bath and its quantum simulation. Phys. Rev. A 104, 062429 (2021). https://doi.org/10.1103/PhysRevA.104.062429
e Souza, R.M., Impens, F., Neto, P.A.M.: Microscopic dynamical Casimir effect. Phys. Rev. A 97, 032514 (2018). https://doi.org/10.1103/PhysRevA.97.032514
Ferreri, A., Domina, M., Rizzuto, L., Passante, R.: Spontaneous emission of an atom near an oscillating mirror. Symmetry 11(11), 1384 (2019). https://doi.org/10.3390/sym11111384
Dolan, B.P., Hunter-McCabe, A., Twamley, J.: Shaking photons from the vacuum: acceleration radiation from vibrating atoms. New J. Phys. 22(3), 033026 (2020). https://doi.org/10.1088/1367-2630/ab7bd5
Motazedifard, A., Dalafi, A., Naderi, M., Roknizadeh, R.: Controllable generation of photons and phonons in a coupled Bose-Einstein condensate-optomechanical cavity via the parametric dynamical Casimir effect. Ann. Phys. (N.Y.) 396, 202–219 (2018). https://doi.org/10.1016/j.aop.2018.07.013
Lo, L., Law, C.K.: Quantum radiation from a shaken two-level atom in vacuum. Phys. Rev. A 98, 063807 (2018). https://doi.org/10.1103/PhysRevA.98.063807
Wang, Y.P., Zhang, Z.C., Yu, Y.F., Zhang, Z.M.: Effects of the Casimir force on the properties of a hybrid optomechanical system. Chin. Phys. B 28, 1 (2019). https://doi.org/10.1088/1674-1056/28/1/014202
Pirkkalainen, J.M., Cho, S.U., Massel, F., Tuorila, J., Heikkilä, T.T., Hakonen, P.J., Sillanpää, M.A.: Cavity optomechanics mediated by a quantum two-level system. Nat. Commun. 6(1), 6981 (2015). https://doi.org/10.1038/ncomms7981
Zhong, Z.-R., Wang, X., Qin, W.: Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure. Front. Phys. 13, 1–11 (2018). https://doi.org/10.1007/s11467-018-0824-9
Neumeier, L., Northup, T.E., Chang, D.E.: Reaching the optomechanical strong-coupling regime with a single atom in a cavity. Phys. Rev. A 97, 063857 (2018). https://doi.org/10.1103/PhysRevA.97.063857
Chen, B., Shang, L., Wang, X.-F., Chen, J.-B., Xue, H.-B., Liu, X., Zhang, J.: Atom-assisted second-order sideband generation in an optomechanical system with atom-cavity-resonator coupling. Phys. Rev. A 99, 063810 (2019). https://doi.org/10.1103/PhysRevA.99.063810
Han, Y., Xue, L., Zhang, J.: Superradiance and collective gain in the atom-assisted multimode optomechanical system. Int. J. Theor. Phys. 58, 992–1000 (2019). https://doi.org/10.1007/s10773-018-3990-1
Wu, E., Li, D., Li, F., Ma, Y.: Enhanced entanglement between two mechanical resonators in two optomechanical cavities with an atomic medium. Int. J. Theor. Phys. 56, 1665–1672 (2017). https://doi.org/10.1007/s10773-017-3307-9
Lo, L., Fong, P.T., Law, C.K.: Dynamical Casimir effect in resonance fluorescence. Phys. Rev. A 102, 033703 (2020). https://doi.org/10.1103/PhysRevA.102.033703
Joshi, A.: Nonlinear dynamical evolution of the driven two-photon Jaynes-cummings model. Phys. Rev. A 62, 043812 (2000). https://doi.org/10.1103/PhysRevA.62.043812
Felicetti, S., Pedernales, J.S., Egusquiza, I.L., Romero, G., Lamata, L., Braak, D., Solano, E.: Spectral collapse via two-phonon interactions in trapped ions. Phys. Rev. A 92, 033817 (2015). https://doi.org/10.1103/PhysRevA.92.033817
Garbe, L., Egusquiza, I.L., Solano, E., Ciuti, C., Coudreau, T., Milman, P., Felicetti, S.: Superradiant phase transition in the ultrastrong-coupling regime of the two-photon Dicke model. Phys. Rev. A 95, 053854 (2017). https://doi.org/10.1103/PhysRevA.95.053854
Law, C.K.: Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation. Phys. Rev. A 51, 2537–2541 (1995). https://doi.org/10.1103/PhysRevA.51.2537
Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014). https://doi.org/10.1103/RevModPhys.86.1391
James, D., Jerke, J.: Effective Hamiltonian theory and its applications in quantum information. Can. J. Phys. 85(6), 625–632 (2007). https://doi.org/10.1139/p07-060
Gamel, O., James, D.F.V.: Time-averaged quantum dynamics and the validity of the effective Hamiltonian model. Phys. Rev. A 82, 052106 (2010). https://doi.org/10.1103/PhysRevA.82.052106
Shao, W., Wu, C., Feng, X.-L.: Generalized James’ effective Hamiltonian method. Phys. Rev. A 95, 032124 (2017). https://doi.org/10.1103/PhysRevA.95.032124
Beaudoin, F., Gambetta, J.M., Blais, A.: Dissipation and ultrastrong coupling in circuit QED. Phys. Rev. A 84, 043832 (2011). https://doi.org/10.1103/PhysRevA.84.043832
Felicetti, S., Pedernales, J.S., Egusquiza, I.L., Romero, G., Lamata, L., Braak, D., Solano, E.: Spectral collapse via two-phonon interactions in trapped ions. Phys. Rev. A 92, 033817 (2015). https://doi.org/10.1103/PhysRevA.92.033817
Zheng, S.-B.: Dicke-like quantum phase transition and vacuum entanglement with two coupled atomic ensembles. Phys. Rev. A 84, 033817 (2011). https://doi.org/10.1103/PhysRevA.84.033817
Ian, H., Gong, Z.R., Liu, Y.-X., Sun, C.P., Nori, F.: Cavity optomechanical coupling assisted by an atomic gas. Phys. Rev. A 78, 013824 (2008). https://doi.org/10.1103/PhysRevA.78.013824
Chen, X.-Y., Zhang, Y.-Y.: Finite-size scaling analysis in the two-photon Dicke model. Phys. Rev. A 97, 053821 (2018). https://doi.org/10.1103/PhysRevA.97.053821
Garbe, L., Egusquiza, I.L., Solano, E., Ciuti, C., Coudreau, T., Milman, P., Felicetti, S.: Superradiant phase transition in the ultrastrong-coupling regime of the two-photon Dicke model. Phys. Rev. A 95, 053854 (2017). https://doi.org/10.1103/PhysRevA.95.053854
Garraway, B.M.: The dicke model in quantum optics: Dicke model revisited. Philos. Trans. R. Soc. A 369(1939), 1137–1155 (2011). https://doi.org/10.1098/rsta.2010.0333
Lü, X.-Y., Wu, Y., Johansson, J.R., Jing, H., Zhang, J., Nori, F.: Squeezed optomechanics with phase-matched amplification and dissipation. Phys. Rev. Lett. 114, 093602 (2015). https://doi.org/10.1103/PhysRevLett.114.093602
Ma, K.K.W., Law, C.K.: Three-photon resonance and adiabatic passage in the large-detuning Rabi model. Phys. Rev. A 92, 023842 (2015). https://doi.org/10.1103/PhysRevA.92.023842
Enzian, G., et al.: Optica 6, 7 (2019). https://doi.org/10.1364/OPTICA.6.000007
Pirkkalainen, J.M., Cho, S.U., et al.: Cavity optomechanics mediated by a quantum two-level system. Nat. Commun. 6(6981), 1 (2015). https://doi.org/10.1038/ncomms7981
Niemczyk, T., Deppe, F., et al.: Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6(10), 772 (2010). https://doi.org/10.1038/nphys1730
Mirhosseini, M., Sipahigil, A., et al.: Superconducting qubit to optical photon transduction. Nature 588(7839), 599 (2020). https://doi.org/10.1038/s41586-020-3038-6
Clerk, A.A., Lehnert, K.W., et al.: Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. 16(3), 257 (2020). https://doi.org/10.1038/s41567-020-0797-9
Bienfait, A.: Phonon-mediated quantum state transfer and remote qubit entanglement. Science 364(6438), 368 (2019). https://doi.org/10.1126/science.aaw8415
O’Connell, A.D., Hofheinz, M., et al.: Quantum ground state and single-phonon control of a mechanical resonator. Nature 464(7289), 697 (2010). https://doi.org/10.1038/nature08967
Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grant No. 12074070, and the Natural Science Foundation of Fujian Province under Grant No. 2020J01471.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lan, ZL., Chen, YW., Cheng, LY. et al. Dynamical Casimir effect in a hybrid cavity optomechanical system. Quantum Inf Process 23, 72 (2024). https://doi.org/10.1007/s11128-024-04267-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04267-3