Abstract
Measurement-device-independent quantum key distribution (MDI-QKD) has demonstrated significant security in countering detection-side attacks, expanding the practical applications of quantum communication over fiber-based links. Nevertheless, implementing MDI-QKD over free-space links presents challenges, including fluctuations in transmittance induced by atmospheric turbulence. Adaptive optics (AO) provides an effective means to mitigate the impact of atmospheric turbulence. Here we investigate the feasibility of extending AO to free-space MDI-QKD, using a satellite-based MDI-QKD model and an elliptic-beam model to describe the probability distribution of transmittance (PDT). Through comprehensive numerical simulations, we assess the impact of communication distance and turbulence intensity on PDT, highlighting the effectiveness of AO optimization in enhancing the practicality of the protocol over free-space links. The results provide valuable insights for future research in the field of free-space quantum communication.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
Yin, H.L., Fu, Y., Li, C.L., Weng, C.X., Li, B.H., Gu, J., Lu, Y.S., Huang, S., Chen, Z.B.: Experimental quantum secure network with digital signatures and encryption. Natl. Sci. Rev. 10(4), nwac228 (2023)
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)
Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130,503-130,503 (2012)
Yin, H.L., Chen, T.Y., Yu, Z.W., Liu, H., You, L.X., Zhou, Y.H., Chen, S.J., Mao, Y., Huang, M.Q., Zhang, W.J., Chen, H., Li, M.J., Nolan, D., Zhou, F., Jiang, X., Wang, Z., Zhang, Q., Wang, X.B., Pan, J.W.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190,501 (2016)
Comandar, L., Lucamarini, M., Fröhlich, B., Dynes, J., Sharpe, A., Tam, S.B., Yuan, Z., Penty, R., Shields, A.: Quantum key distribution without detector vulnerabilities using optically seeded lasers. Nat. Photonics 10(5), 312–315 (2016)
Tang, Y.L., Yin, H.L., Zhao, Q., Liu, H., Sun, X.X., Huang, M.Q., Zhang, W.J., Chen, S.J., Zhang, L., You, L.X., et al.: Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys. Rev. X 6(1), 011,024 (2016)
Xu, F., Curty, M., Qi, B., Lo, H.K.: Practical aspects of measurement-device-independent quantum key distribution. New J. Phys. 15(11), 113,007 (2013)
Peng, C.Z., Zhang, J., Yang, D., Gao, W.B., Ma, H.X., Yin, H., Zeng, H.P., Yang, T., Wang, X.B., Pan, J.W.: Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 98(1), 010,505 (2007)
Rosenberg, D., Harrington, J.W., Rice, P.R., Hiskett, P.A., Peterson, C.G., Hughes, R.J., Lita, A.E., Nam, S.W., Nordholt, J.E.: Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98(1), 010,503 (2007)
Adachi, Y., Yamamoto, T., Koashi, M., Imoto, N.: Simple and efficient quantum key distribution with parametric down-conversion. Phys. Rev. Lett. 99(18), 180,503 (2007)
Wang, Q., Chen, W., Xavier, G., Swillo, M., Zhang, T., Sauge, S., Tengner, M., Han, Z.F., Guo, G.C., Karlsson, A.: Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source. Phys. Rev. Lett. 100(9), 090,501 (2008)
Wang, X.B., Peng, C.Z., Zhang, J., Yang, L., Pan, J.W.: General theory of decoy-state quantum cryptography with source errors. Phys. Rev. A 77(4), 042,311 (2008)
Wang, X.B., Hiroshima, T., Tomita, A., Hayashi, M.: Quantum information with gaussian states. Phys. Rep. 448(1–4), 1–111 (2007)
Xu, F., Zhang, Y., Zhou, Z., Chen, W., Han, Z., Guo, G.: Experimental demonstration of counteracting imperfect sources in a practical one-way quantum-key-distribution system. Phys. Rev. A 80(6), 062,309 (2009)
Wang, X.B., Yang, L., Peng, C.Z., Pan, J.W.: Decoy-state quantum key distribution with both source errors and statistical fluctuations. New J. Phys. 11(7), 075,006 (2009)
Gu, J., Cao, X.Y., Fu, Y., He, Z.W., Yin, Z.J., Yin, H.L., Chen, Z.B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Sci. Bull. 67(21), 2167–2175 (2022)
Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018)
...Liu, H., Jiang, C., Zhu, H.T., Zou, M., Yu, Z.W., Hu, X.L., Xu, H., Ma, S., Han, Z., Chen, J.P., Dai, Y., Tang, S.B., Zhang, W., Li, H., You, L., Wang, Z., Hua, Y., Hu, H., Zhang, H., Zhou, F., Zhang, Q., Wang, X.B., Chen, T.Y., Pan, J.W.: Field test of twin-field quantum key distribution through sending-or-not-sending over 428 km. Phys. Rev. Lett. 126(25), 250,502 (2021)
Chen, J.P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.J., Han, Z.Y., Ma, S.Z., Hu, X.L., Li, Y.H., Liu, H., Zhou, F., Jiang, H.F., Chen, T.Y., Li, H., You, L.X., Wang, Z., Wang, X.B., Zhang, Q., Pan, J.W.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nat. Photon. 15(8), 570–575 (2021)
Wang, S., Yin, Z.Q., He, D.Y., Chen, W., Wang, R.Q., Ye, P., Zhou, Y., Fan-Yuan, G.J., Wang, F.X., Chen, W., Zhu, Y.G., Morozov, P.V., Divochiy, A.V., Zhou, Z., Guo, G.C., Han, Z.F.: Twin-field quantum key distribution over 830-km fibre. Nat. Photon. 16(2), 154–161 (2022)
Zhou, L., Lin, J., Jing, Y., Yuan, Z.: Twin-field quantum key distribution without optical frequency dissemination. Nat. Commun. 14(1), 928 (2023)
Wang, J., Huberman, B.A., et al.: An overview on deployment strategies for global quantum key distribution networks. Wirel. Commun. Mobile Comput. 1, 23–455 (2022). https://doi.org/10.1155/2022/9927255
Cao, Y., Li, Y.H., Yang, K.X., Jiang, Y.F., Li, S.L., Hu, X.L., Abulizi, M., Li, C.L., Zhang, W., Sun, Q.C., et al.: Long-distance free-space measurement-device-independent quantum key distribution. Phys. Rev. Lett. 125(26), 260,503 (2020)
Rollick, B.J., Siopsis, G., Qi, B.: Dynamic attenuation scheme in measurement-device-independent quantum key distribution over turbulent channels. Phys. Rev. A 106(3), 032,405 (2022)
Zhu, Z.D., Chen, D., Zhao, S.H., Zhang, Q.H., Xi, J.H.: Real-time selection for free-space measurement device independent quantum key distribution. Quantum Inf. Process. 18, 1–11 (2019)
Xie, Y.M., Lu, Y.S., Weng, C.X., Cao, X.Y., Jia, Z.Y., Bao, Y., Wang, Y., Fu, Y., Yin, H.L., Chen, Z.B.: Breaking the rate-loss bound of quantum key distribution with asynchronous two-photon interference. PRX Quantum 3(2), 020,315 (2022)
Zeng, P., Zhou, H., Wu, W., Ma, X.: Mode-pairing quantum key distribution. Nat. Commun. 13(1), 3903 (2022)
Zhu, H.T., Huang, Y., Liu, H., Zeng, P., Zou, M., Dai, Y., Tang, S., Li, H., You, L., Wang, Z., Chen, Y.A., Ma, X., Chen, T.Y., Pan, J.W.: Experimental mode-pairing measurement-device-independent quantum key distribution without global phase locking. Phys. Rev. Lett. 130, 030,801 (2023)
Semenov, A.A., Vogel, W.: Quantum light in the turbulent atmosphere. Phys. Rev. A 80, 021,802(R) (2009)
Milonni, P.W., Carter, J.H., Peterson, C.G., Hughes, R.J.: Effects of propagation through atmospheric turbulence on photon statistics. J. Opt. B: Quantum Semiclass. Opt. 6(8), S742–S745 (2004)
Vasylyev, D., Semenov, A.A., Vogel, W.: Atmospheric quantum channels with weak and strong turbulence. Phys. Rev. Lett. 117(9), 090,501 (2016)
Vasylyev, D., Semenov, A.A., Vogel, W., Günthner, K., Thurn, A., Bayraktar, Ö., Marquardt, C.: Free-space quantum links under diverse weather conditions. Phys. Rev. A 96(4), 043,856 (2017)
Liorni, C., Kampermann, H., Bruß, D.: Satellite-based links for quantum key distribution: beam effects and weather dependence. New J. Phys. 21(9), 093,055 (2019)
Liang, W., Jiao, R.: Satellite-based measurement-device-independent quantum key distribution. New J. Phys. 22(8), 083,074 (2020)
Chen, Y.A., Zhang, Q., Chen, T.Y., Cai, W.Q., Liao, S.K., Zhang, J., Chen, K., Yin, J., Ren, J.G., Chen, Z., et al.: An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 589(7841), 214–219 (2021)
Yin, J., Li, Y.H., Liao, S.K., Yang, M., Cao, Y., Zhang, L., Ren, J.G., Cai, W.Q., Liu, W.Y., Li, S.L., et al.: Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582(7813), 501–505 (2020)
Dai, H., Shen, Q., Wang, C.Z., Li, S.L., Liu, W.Y., Cai, W.Q., Liao, S.K., Ren, J.G., Yin, J., Chen, Y.A., et al.: Towards satellite-based quantum-secure time transfer. Nat. Phys. 16(8), 848–852 (2020)
Liao, S.K., Cai, W.Q., Liu, W.Y., Zhang, L., Li, Y., Ren, J.G., Yin, J., Shen, Q., Cao, Y., Li, Z.P., et al.: Satellite-to-ground quantum key distribution. Nature 549(7670), 43–47 (2017)
Liao, S.K., Yong, H.L., Liu, C., Shentu, G.L., Li, D.D., Lin, J., Dai, H., Zhao, S.Q., Li, B., Guan, J.Y., et al.: Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat. Photon. 11(8), 509–513 (2017)
Liao, S.K., Cai, W.Q., Handsteiner, J., Liu, B., Yin, J., Zhang, L., Rauch, D., Fink, M., Ren, J.G., Liu, W.Y., et al.: Satellite-relayed intercontinental quantum network. Phys. Rev. Lett. 120(3), 030,501 (2018)
Vallone, G., Marangon, D.G., Canale, M., Savorgnan, I., Bacco, D., Barbieri, M., Calimani, S., Barbieri, C., Laurenti, N., Villoresi, P.: Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels. Phys. Rev. A 91, 042,320 (2015)
Erven, C., Heim, B., Meyer-Scott, E., Bourgoin, J.P., Laflamme, R., Weihs, G., Jennewein, T.: Studying free-space transmission statistics and improving free-space quantum key distribution in the turbulent atmosphere. New J. Phys. 14(12), 123,018 (2012)
Wang, W., Xu, F., Lo, H.K.: Prefixed-threshold real-time selection method in free-space quantum key distribution. Phys. Rev. A 97, 032,337 (2018)
Lanning, R.N., Harris, M.A., Oesch, D.W., Oliker, M.D., Gruneisen, M.T.: Quantum communication over atmospheric channels: a framework for optimizing wavelength and filtering. Phys. Rev. Appl. 16(4), 027 (2021)
Gruneisen, M.T., Flanagan, M.B., Sickmiller, B.A.: Modeling satellite-earth quantum channel downlinks with adaptive-optics coupling to single-mode fibers. Opt. Eng. 56(12), 126,111 (2017)
Gruneisen, M.T., Sickmiller, B.A., Flanagan, M.B., Black, J.P., Stoltenberg, K.E., Duchane, A.W.: Adaptive spatial filtering of daytime sky noise in a satellite quantum key distribution downlink receiver. Opt. Eng. 55(2), 026,104 (2016)
Tyson, R.K., Frazier, B.W.: Principles of Adaptive Optics. CRC Press, Boca Raton (2022)
Gruneisen, M.T., Eickhoff, M.L., Newey, S.C., Stoltenberg, K.E., Morris, J.F., Bareian, M., Harris, M.A., Oesch, D.W., Oliker, M.D., Flanagan, M.B., et al.: Adaptive-optics-enabled quantum communication: a technique for daytime space-to-earth links. Phys. Rev. Appl. 16(1), 014,067 (2021)
Acknowledgements
The project was supported by Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications)(No. IPOC2023ZT05), P. R. China and National Natural Science Foundation of China (Grant No. 61571060).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no financial or proprietary interests in any material discussed in this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Huang, G., Song, Z., Dong, Q. et al. Enhanced Performance of Measurement-device-independent Quantum Key Distribution over Turbulent Channels through Adaptive Optics. Quantum Inf Process 23, 68 (2024). https://doi.org/10.1007/s11128-024-04270-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04270-8