Skip to main content
Log in

Enhanced Performance of Measurement-device-independent Quantum Key Distribution over Turbulent Channels through Adaptive Optics

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Measurement-device-independent quantum key distribution (MDI-QKD) has demonstrated significant security in countering detection-side attacks, expanding the practical applications of quantum communication over fiber-based links. Nevertheless, implementing MDI-QKD over free-space links presents challenges, including fluctuations in transmittance induced by atmospheric turbulence. Adaptive optics (AO) provides an effective means to mitigate the impact of atmospheric turbulence. Here we investigate the feasibility of extending AO to free-space MDI-QKD, using a satellite-based MDI-QKD model and an elliptic-beam model to describe the probability distribution of transmittance (PDT). Through comprehensive numerical simulations, we assess the impact of communication distance and turbulence intensity on PDT, highlighting the effectiveness of AO optimization in enhancing the practicality of the protocol over free-space links. The results provide valuable insights for future research in the field of free-space quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Yin, H.L., Fu, Y., Li, C.L., Weng, C.X., Li, B.H., Gu, J., Lu, Y.S., Huang, S., Chen, Z.B.: Experimental quantum secure network with digital signatures and encryption. Natl. Sci. Rev. 10(4), nwac228 (2023)

    ADS  Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    MathSciNet  Google Scholar 

  3. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130,503-130,503 (2012)

    Google Scholar 

  4. Yin, H.L., Chen, T.Y., Yu, Z.W., Liu, H., You, L.X., Zhou, Y.H., Chen, S.J., Mao, Y., Huang, M.Q., Zhang, W.J., Chen, H., Li, M.J., Nolan, D., Zhou, F., Jiang, X., Wang, Z., Zhang, Q., Wang, X.B., Pan, J.W.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190,501 (2016)

    Google Scholar 

  5. Comandar, L., Lucamarini, M., Fröhlich, B., Dynes, J., Sharpe, A., Tam, S.B., Yuan, Z., Penty, R., Shields, A.: Quantum key distribution without detector vulnerabilities using optically seeded lasers. Nat. Photonics 10(5), 312–315 (2016)

    ADS  Google Scholar 

  6. Tang, Y.L., Yin, H.L., Zhao, Q., Liu, H., Sun, X.X., Huang, M.Q., Zhang, W.J., Chen, S.J., Zhang, L., You, L.X., et al.: Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys. Rev. X 6(1), 011,024 (2016)

    Google Scholar 

  7. Xu, F., Curty, M., Qi, B., Lo, H.K.: Practical aspects of measurement-device-independent quantum key distribution. New J. Phys. 15(11), 113,007 (2013)

    Google Scholar 

  8. Peng, C.Z., Zhang, J., Yang, D., Gao, W.B., Ma, H.X., Yin, H., Zeng, H.P., Yang, T., Wang, X.B., Pan, J.W.: Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 98(1), 010,505 (2007)

    Google Scholar 

  9. Rosenberg, D., Harrington, J.W., Rice, P.R., Hiskett, P.A., Peterson, C.G., Hughes, R.J., Lita, A.E., Nam, S.W., Nordholt, J.E.: Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98(1), 010,503 (2007)

    Google Scholar 

  10. Adachi, Y., Yamamoto, T., Koashi, M., Imoto, N.: Simple and efficient quantum key distribution with parametric down-conversion. Phys. Rev. Lett. 99(18), 180,503 (2007)

    Google Scholar 

  11. Wang, Q., Chen, W., Xavier, G., Swillo, M., Zhang, T., Sauge, S., Tengner, M., Han, Z.F., Guo, G.C., Karlsson, A.: Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source. Phys. Rev. Lett. 100(9), 090,501 (2008)

    Google Scholar 

  12. Wang, X.B., Peng, C.Z., Zhang, J., Yang, L., Pan, J.W.: General theory of decoy-state quantum cryptography with source errors. Phys. Rev. A 77(4), 042,311 (2008)

    Google Scholar 

  13. Wang, X.B., Hiroshima, T., Tomita, A., Hayashi, M.: Quantum information with gaussian states. Phys. Rep. 448(1–4), 1–111 (2007)

    ADS  MathSciNet  Google Scholar 

  14. Xu, F., Zhang, Y., Zhou, Z., Chen, W., Han, Z., Guo, G.: Experimental demonstration of counteracting imperfect sources in a practical one-way quantum-key-distribution system. Phys. Rev. A 80(6), 062,309 (2009)

    Google Scholar 

  15. Wang, X.B., Yang, L., Peng, C.Z., Pan, J.W.: Decoy-state quantum key distribution with both source errors and statistical fluctuations. New J. Phys. 11(7), 075,006 (2009)

    Google Scholar 

  16. Gu, J., Cao, X.Y., Fu, Y., He, Z.W., Yin, Z.J., Yin, H.L., Chen, Z.B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Sci. Bull. 67(21), 2167–2175 (2022)

    Google Scholar 

  17. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018)

    ADS  Google Scholar 

  18. ...Liu, H., Jiang, C., Zhu, H.T., Zou, M., Yu, Z.W., Hu, X.L., Xu, H., Ma, S., Han, Z., Chen, J.P., Dai, Y., Tang, S.B., Zhang, W., Li, H., You, L., Wang, Z., Hua, Y., Hu, H., Zhang, H., Zhou, F., Zhang, Q., Wang, X.B., Chen, T.Y., Pan, J.W.: Field test of twin-field quantum key distribution through sending-or-not-sending over 428 km. Phys. Rev. Lett. 126(25), 250,502 (2021)

    Google Scholar 

  19. Chen, J.P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.J., Han, Z.Y., Ma, S.Z., Hu, X.L., Li, Y.H., Liu, H., Zhou, F., Jiang, H.F., Chen, T.Y., Li, H., You, L.X., Wang, Z., Wang, X.B., Zhang, Q., Pan, J.W.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nat. Photon. 15(8), 570–575 (2021)

    ADS  Google Scholar 

  20. Wang, S., Yin, Z.Q., He, D.Y., Chen, W., Wang, R.Q., Ye, P., Zhou, Y., Fan-Yuan, G.J., Wang, F.X., Chen, W., Zhu, Y.G., Morozov, P.V., Divochiy, A.V., Zhou, Z., Guo, G.C., Han, Z.F.: Twin-field quantum key distribution over 830-km fibre. Nat. Photon. 16(2), 154–161 (2022)

    ADS  Google Scholar 

  21. Zhou, L., Lin, J., Jing, Y., Yuan, Z.: Twin-field quantum key distribution without optical frequency dissemination. Nat. Commun. 14(1), 928 (2023)

    ADS  Google Scholar 

  22. Wang, J., Huberman, B.A., et al.: An overview on deployment strategies for global quantum key distribution networks. Wirel. Commun. Mobile Comput. 1, 23–455 (2022). https://doi.org/10.1155/2022/9927255

    Article  Google Scholar 

  23. Cao, Y., Li, Y.H., Yang, K.X., Jiang, Y.F., Li, S.L., Hu, X.L., Abulizi, M., Li, C.L., Zhang, W., Sun, Q.C., et al.: Long-distance free-space measurement-device-independent quantum key distribution. Phys. Rev. Lett. 125(26), 260,503 (2020)

    Google Scholar 

  24. Rollick, B.J., Siopsis, G., Qi, B.: Dynamic attenuation scheme in measurement-device-independent quantum key distribution over turbulent channels. Phys. Rev. A 106(3), 032,405 (2022)

    MathSciNet  Google Scholar 

  25. Zhu, Z.D., Chen, D., Zhao, S.H., Zhang, Q.H., Xi, J.H.: Real-time selection for free-space measurement device independent quantum key distribution. Quantum Inf. Process. 18, 1–11 (2019)

    ADS  Google Scholar 

  26. Xie, Y.M., Lu, Y.S., Weng, C.X., Cao, X.Y., Jia, Z.Y., Bao, Y., Wang, Y., Fu, Y., Yin, H.L., Chen, Z.B.: Breaking the rate-loss bound of quantum key distribution with asynchronous two-photon interference. PRX Quantum 3(2), 020,315 (2022)

    Google Scholar 

  27. Zeng, P., Zhou, H., Wu, W., Ma, X.: Mode-pairing quantum key distribution. Nat. Commun. 13(1), 3903 (2022)

    ADS  Google Scholar 

  28. Zhu, H.T., Huang, Y., Liu, H., Zeng, P., Zou, M., Dai, Y., Tang, S., Li, H., You, L., Wang, Z., Chen, Y.A., Ma, X., Chen, T.Y., Pan, J.W.: Experimental mode-pairing measurement-device-independent quantum key distribution without global phase locking. Phys. Rev. Lett. 130, 030,801 (2023)

    Google Scholar 

  29. Semenov, A.A., Vogel, W.: Quantum light in the turbulent atmosphere. Phys. Rev. A 80, 021,802(R) (2009)

    Google Scholar 

  30. Milonni, P.W., Carter, J.H., Peterson, C.G., Hughes, R.J.: Effects of propagation through atmospheric turbulence on photon statistics. J. Opt. B: Quantum Semiclass. Opt. 6(8), S742–S745 (2004)

    ADS  Google Scholar 

  31. Vasylyev, D., Semenov, A.A., Vogel, W.: Atmospheric quantum channels with weak and strong turbulence. Phys. Rev. Lett. 117(9), 090,501 (2016)

    Google Scholar 

  32. Vasylyev, D., Semenov, A.A., Vogel, W., Günthner, K., Thurn, A., Bayraktar, Ö., Marquardt, C.: Free-space quantum links under diverse weather conditions. Phys. Rev. A 96(4), 043,856 (2017)

    Google Scholar 

  33. Liorni, C., Kampermann, H., Bruß, D.: Satellite-based links for quantum key distribution: beam effects and weather dependence. New J. Phys. 21(9), 093,055 (2019)

    Google Scholar 

  34. Liang, W., Jiao, R.: Satellite-based measurement-device-independent quantum key distribution. New J. Phys. 22(8), 083,074 (2020)

    Google Scholar 

  35. Chen, Y.A., Zhang, Q., Chen, T.Y., Cai, W.Q., Liao, S.K., Zhang, J., Chen, K., Yin, J., Ren, J.G., Chen, Z., et al.: An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 589(7841), 214–219 (2021)

    ADS  Google Scholar 

  36. Yin, J., Li, Y.H., Liao, S.K., Yang, M., Cao, Y., Zhang, L., Ren, J.G., Cai, W.Q., Liu, W.Y., Li, S.L., et al.: Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582(7813), 501–505 (2020)

    ADS  Google Scholar 

  37. Dai, H., Shen, Q., Wang, C.Z., Li, S.L., Liu, W.Y., Cai, W.Q., Liao, S.K., Ren, J.G., Yin, J., Chen, Y.A., et al.: Towards satellite-based quantum-secure time transfer. Nat. Phys. 16(8), 848–852 (2020)

    Google Scholar 

  38. Liao, S.K., Cai, W.Q., Liu, W.Y., Zhang, L., Li, Y., Ren, J.G., Yin, J., Shen, Q., Cao, Y., Li, Z.P., et al.: Satellite-to-ground quantum key distribution. Nature 549(7670), 43–47 (2017)

    ADS  Google Scholar 

  39. Liao, S.K., Yong, H.L., Liu, C., Shentu, G.L., Li, D.D., Lin, J., Dai, H., Zhao, S.Q., Li, B., Guan, J.Y., et al.: Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat. Photon. 11(8), 509–513 (2017)

    Google Scholar 

  40. Liao, S.K., Cai, W.Q., Handsteiner, J., Liu, B., Yin, J., Zhang, L., Rauch, D., Fink, M., Ren, J.G., Liu, W.Y., et al.: Satellite-relayed intercontinental quantum network. Phys. Rev. Lett. 120(3), 030,501 (2018)

    Google Scholar 

  41. Vallone, G., Marangon, D.G., Canale, M., Savorgnan, I., Bacco, D., Barbieri, M., Calimani, S., Barbieri, C., Laurenti, N., Villoresi, P.: Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels. Phys. Rev. A 91, 042,320 (2015)

    Google Scholar 

  42. Erven, C., Heim, B., Meyer-Scott, E., Bourgoin, J.P., Laflamme, R., Weihs, G., Jennewein, T.: Studying free-space transmission statistics and improving free-space quantum key distribution in the turbulent atmosphere. New J. Phys. 14(12), 123,018 (2012)

    Google Scholar 

  43. Wang, W., Xu, F., Lo, H.K.: Prefixed-threshold real-time selection method in free-space quantum key distribution. Phys. Rev. A 97, 032,337 (2018)

    Google Scholar 

  44. Lanning, R.N., Harris, M.A., Oesch, D.W., Oliker, M.D., Gruneisen, M.T.: Quantum communication over atmospheric channels: a framework for optimizing wavelength and filtering. Phys. Rev. Appl. 16(4), 027 (2021)

    Google Scholar 

  45. Gruneisen, M.T., Flanagan, M.B., Sickmiller, B.A.: Modeling satellite-earth quantum channel downlinks with adaptive-optics coupling to single-mode fibers. Opt. Eng. 56(12), 126,111 (2017)

    Google Scholar 

  46. Gruneisen, M.T., Sickmiller, B.A., Flanagan, M.B., Black, J.P., Stoltenberg, K.E., Duchane, A.W.: Adaptive spatial filtering of daytime sky noise in a satellite quantum key distribution downlink receiver. Opt. Eng. 55(2), 026,104 (2016)

    Google Scholar 

  47. Tyson, R.K., Frazier, B.W.: Principles of Adaptive Optics. CRC Press, Boca Raton (2022)

    Google Scholar 

  48. Gruneisen, M.T., Eickhoff, M.L., Newey, S.C., Stoltenberg, K.E., Morris, J.F., Bareian, M., Harris, M.A., Oesch, D.W., Oliker, M.D., Flanagan, M.B., et al.: Adaptive-optics-enabled quantum communication: a technique for daytime space-to-earth links. Phys. Rev. Appl. 16(1), 014,067 (2021)

    Google Scholar 

Download references

Acknowledgements

The project was supported by Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications)(No. IPOC2023ZT05), P. R. China and National Natural Science Foundation of China (Grant No. 61571060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongzhen Jiao.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Song, Z., Dong, Q. et al. Enhanced Performance of Measurement-device-independent Quantum Key Distribution over Turbulent Channels through Adaptive Optics. Quantum Inf Process 23, 68 (2024). https://doi.org/10.1007/s11128-024-04270-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04270-8

Keywords

Navigation