Skip to main content
Log in

Relating intrinsic concurrence to quantum steering and its application in teleportation for three-qubit states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the relation between intrinsic concurrence and quantum steering and also apply the former in teleportation for three-qubit states. It is found that the sum of the squares of the bipartite reduced intrinsic concurrences for an arbitrary three-qubit state is upper bounded by 3/2. The triples of intrinsic concurrence and quantum steering of bipartite reduced states obtained from a three-qubit pure state maintain the same ordering. Moreover, the bipartite intrinsic concurrence greater than \(\sqrt{2}/2\) will result in the corresponding two-qubit reduced state being steerable. Subsequently, a complementary relation between intrinsic concurrence and quantum steering is given for a three-qubit pure state. In the end, it is concluded that, for three-qubit pure states, the greater intrinsic concurrence of the two-qubit reduced state is, the more useful it is for quantum teleportation. These results indicate that intrinsic concurrence closely relates to quantum correlations and has important applications in quantum information processing tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998). https://doi.org/10.1103/PhysRevLett.80.2245

    Article  ADS  Google Scholar 

  2. Eisert, J., Plenio, M.B.: A comparison of entanglement measures. J. Mod. Opt. 46, 145 (1999). https://doi.org/10.1080/09500349908231260

    Article  ADS  Google Scholar 

  3. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002). https://doi.org/10.1103/PhysRevA.65.032314

    Article  ADS  Google Scholar 

  4. Sabín, C., García-Alcaine, G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48, 435 (2008). https://doi.org/10.1140/epjd/e2008-00112-5

    Article  MathSciNet  ADS  Google Scholar 

  5. Li, Y., Shang, J.: Geometric mean of bipartite concurrences as a genuine multipartite entanglement measure. Phys. Rev. Res. 4, 023059 (2022). https://doi.org/10.1103/PhysRevResearch.4.023059

    Article  Google Scholar 

  6. Gour, G.: Family of concurrence monotones and its applications. Phys. Rev. A 71, 012318 (2005). https://doi.org/10.1103/PhysRevA.71.012318

    Article  MathSciNet  ADS  Google Scholar 

  7. Xie, S., Eberly, J.H.: Triangle measure of tripartite entanglement. Phys. Rev. Lett. 127, 040403 (2021). https://doi.org/10.1103/PhysRevLett.127.040403

    Article  MathSciNet  ADS  Google Scholar 

  8. Ge, X., Liu, L., Cheng, S.: Tripartite entanglement measure under local operations and classical communication. Phys. Rev. A 107, 032405 (2023). https://doi.org/10.1103/PhysRevA.107.032405

    Article  MathSciNet  ADS  Google Scholar 

  9. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991). https://doi.org/10.1103/PhysRevLett.67.661

    Article  MathSciNet  ADS  Google Scholar 

  10. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  MathSciNet  ADS  Google Scholar 

  11. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992). https://doi.org/10.1103/PhysRevLett.69.2881

    Article  MathSciNet  ADS  Google Scholar 

  12. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000). https://doi.org/10.1103/PhysRevA.63.014302

    Article  ADS  Google Scholar 

  13. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001). https://doi.org/10.1103/PhysRevLett.87.077902

    Article  ADS  Google Scholar 

  14. Fan, X.-G., Sun, W.-Y., Ding, Z.-Y., Ming, F., Yang, H., Wang, D., Ye, L.: Universal complementarity between coherence and intrinsic concurrence for two-qubit states. New J. Phys. 21, 093053 (2019). https://doi.org/10.1088/1367-2630/ab41b1

    Article  MathSciNet  ADS  Google Scholar 

  15. Ming, F., Wang, D., Li, L.-J., Fan, X.-G., Song, X.-K., Ye, L., Chen, J.-L.: Tradeoff relations in quantum resource theory. Adv. Quantum Technol. 4, 2100036 (2021). https://doi.org/10.1002/qute.202100036

    Article  Google Scholar 

  16. Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Cambridge Philos. Soc. 31, 553 (1935). https://doi.org/10.1017/S0305004100013554

    Article  ADS  Google Scholar 

  17. Schrödinger, E.: Probability relations between separated systems. Proc. Cambridge Philos. Soc. 32, 446 (1936). https://doi.org/10.1017/S0305004100019137

    Article  ADS  Google Scholar 

  18. Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen Paradox. Phys. Rev. Lett. 98, 140402 (2007). https://doi.org/10.1103/PhysRevLett.98.140402

    Article  MathSciNet  ADS  Google Scholar 

  19. Jones, S.J., Wiseman, H.M., Doherty, A.C.: Entanglement, Einstein-Podolsky-Rosen correlations, Bell nonlocality, and steering. Phys. Rev. A 76, 052116 (2007). https://doi.org/10.1103/PhysRevA.76.052116

    Article  MathSciNet  ADS  Google Scholar 

  20. Piani, M., Watrous, J.: Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 114, 060404 (2015). https://doi.org/10.1103/PhysRevLett.114.060404

    Article  MathSciNet  ADS  Google Scholar 

  21. Gallego, R., Aolita, L.: Resource theory of steering. Phys. Rev. X 5, 041008 (2015). https://doi.org/10.1103/PhysRevX.5.041008

    Article  Google Scholar 

  22. Skrzypczyk, P., Navascues, M., Cavalcanti, D.: Quantifying Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 112, 180404 (2014). https://doi.org/10.1103/PhysRevLett.112.180404

    Article  ADS  Google Scholar 

  23. Reid, M.D.: Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A 40, 913 (1989). https://doi.org/10.1103/PhysRevA.40.913

    Article  ADS  Google Scholar 

  24. Cavalcanti, E.G., Jones, S.J., Wiseman, H.M., Reid, M.D.: Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox. Phys. Rev. A 80, 032112 (2009). https://doi.org/10.1103/PhysRevA.80.032112

    Article  ADS  Google Scholar 

  25. Walborn, S.P., Salles, A., Gomes, R.M., Toscano, F., Souto Ribeiro, P.H.: Revealing hidden Einstein-Podolsky-Rosen nonlocality. Phys. Rev. Lett. 106, 130402 (2011). https://doi.org/10.1103/PhysRevLett.106.130402

    Article  ADS  Google Scholar 

  26. Schneeloch, J., Broadbent, C.J., Walborn, S.P., Cavalcanti, E.G., Howell, J.C.: Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations. Phys. Rev. A 87, 062103 (2013). https://doi.org/10.1103/PhysRevA.87.062103

    Article  ADS  Google Scholar 

  27. Chen, J.-L., Ye, X.-J., Wu, C., Su, H.-Y., Cabello, A., Kwek, L.C., Oh, C.H.: All-versus-nothing proof of Einstein-Podolsky-Rosen steering. Sci. Rep. 3, 2143 (2013). https://doi.org/10.1038/srep02143

    Article  Google Scholar 

  28. Kogias, I., Skrzypczyk, P., Cavalcanti, D., Acín, A., Adesso, G.: Hierarchy of steering criteria based on moments for all bipartite quantum systems. Phys. Rev. Lett. 115, 210401 (2015). https://doi.org/10.1103/PhysRevLett.115.210401

    Article  ADS  Google Scholar 

  29. Cavalcanti, I.E.G., Foster, C.J., Fuwa, M., Wiseman, H.M.: Analog of the Clauser-Horne-Shimony-Holt inequality for steering. J. Opt. Soc. Am. B 32, A74 (2015). https://doi.org/10.1364/JOSAB.32.000A74

    Article  ADS  Google Scholar 

  30. Zukowski, M., Dutta, A., Yin, Z.: Geometric Bell-like inequalities for steering. Phys. Rev. A 91, 032107 (2015). https://doi.org/10.1103/PhysRevA.91.032107

    Article  MathSciNet  ADS  Google Scholar 

  31. Costa, A.C.S., Angelo, R.M.: Quantification of Einstein-Podolski-Rosen steering for two-qubit states. Phys. Rev. A 93, 020103(R) (2016). https://doi.org/10.1103/PhysRevA.93.020103

    Article  ADS  Google Scholar 

  32. Uola, R., Costa, A.C.S., Nguyen, H.C., Gühne, O.: Quantum steering. Rev. Mod. Phys. 92, 015001 (2020). https://doi.org/10.1103/RevModPhys.92.015001

    Article  MathSciNet  ADS  Google Scholar 

  33. Dai, T.Z., Fan, Y., Qiu, L.: Complementary relation between tripartite entanglement and the maximum steering inequality violation. Phys. Rev. A 105, 022425 (2022). https://doi.org/10.1103/PhysRevA.105.022425

    Article  MathSciNet  ADS  Google Scholar 

  34. Law, Y.Z., Thinh, L.P., Bancal, J.-D., Scarani, V.: Quantum randomness extraction for various levels of characterization of the devices. J. Phys. A: Math. Theor. 47, 424028 (2016). https://doi.org/10.1088/1751-8113/47/42/424028

    Article  MathSciNet  Google Scholar 

  35. Branciard, C., Gisin, N.: Quantifying the nonlocality of Greenberger-Horne-Zeilinger quantum correlations by a bounded communication simulation protocol. Phys. Rev. Lett. 107, 020401 (2011). https://doi.org/10.1103/PhysRevLett.107.020401

    Article  ADS  Google Scholar 

  36. Branciard, C., Cavalcanti, E.G., Walborn, S.P., Scarani, V., Wiseman, H.M.: One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys. Rev. A 85, 010301(R) (2012). https://doi.org/10.1103/PhysRevA.85.010301

    Article  ADS  Google Scholar 

  37. Du, M.-M., Tong, D.M.: Relationship between first-order coherence and the maximum violation of the three-setting linear steering inequality for a two-qubit system. Phys. Rev. A 103, 032407 (2021). https://doi.org/10.1103/PhysRevA.103.032407

    Article  MathSciNet  ADS  Google Scholar 

  38. Paul, B., Mukherjee, K.: Shareability of quantum steering and its relation with entanglement. Phys. Rev. A 102, 052209 (2020). https://doi.org/10.1103/PhysRevA.102.052209

    Article  MathSciNet  ADS  Google Scholar 

  39. Dong, D.-D., Song, X.-K., Fan, X.-G., Ye, L., Wang, D.: Complementary relations of entanglement, coherence, steering, and Bell nonlocality inequality violation in three-qubit states. Phys. Rev. A 107, 052403 (2023). https://doi.org/10.1103/PhysRevA.107.052403

    Article  MathSciNet  ADS  Google Scholar 

  40. Fan, X.-G., Yang, H., Ming, F., Wang, D., Ye, L.: Constraint relation between steerability and concurrence for two-qubit states. Ann. Phys. 533, 2100098 (2021). https://doi.org/10.1002/andp.202100098

    Article  MathSciNet  Google Scholar 

  41. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996). https://doi.org/10.1103/PhysRevLett.76.722

    Article  ADS  Google Scholar 

  42. Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 060502 (2006). https://doi.org/10.1103/PhysRevLett.96.060502

    Article  ADS  Google Scholar 

  43. Man, Z.-X., Xia, Y.-J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75, 052306 (2007). https://doi.org/10.1103/PhysRevA.75.052306

    Article  ADS  Google Scholar 

  44. Lee, S., Joo, J., Kim, J.: Entanglement of three-qubit pure states in terms of teleportation capability. Phys. Rev. A 72, 024302 (2005). https://doi.org/10.1103/PhysRevA.72.024302

    Article  ADS  Google Scholar 

  45. Lee, S., Joo, J., Kim, J.: Teleportation capability, distillability and nonlocality on three-qubit states. Phys. Rev. A 76, 012311 (2007). https://doi.org/10.1103/PhysRevA.76.012311

    Article  ADS  Google Scholar 

  46. Barasiński, A., Svozilík, J.: Controlled teleportation of qubit states: relation between teleportation faithfulness, controller’s authority and tripartite entanglement. Phys. Rev. A 99, 012306 (2019). https://doi.org/10.1103/PhysRevA.99.012306

    Article  ADS  Google Scholar 

  47. Jeong, K., Kim, J., Lee, S.: Minimal control power of the controlled teleportation. Phys. Rev. A 93, 032328 (2016). https://doi.org/10.1103/PhysRevA.93.032328

    Article  ADS  Google Scholar 

  48. Fan, Y., Qiu, L., Jia, C., Gu, Y.: Relating EPR steering with the fidelity of quantum teleportation for two- and three-qubit states. J. Phys. A: Math. Theor. 56, 185303 (2023). https://doi.org/10.1088/1751-8121/accabe

    Article  MathSciNet  ADS  Google Scholar 

  49. Zhou, A.-L., Wang, D., Fan, X.-G., Ming, F., Ye, L.: Mutual restriction between concurrence and intrinsic concurrence for arbitrary two-qubit states. Chin. Phys. Lett. 37(11), 110302 (2020). https://doi.org/10.1088/0256-307X/37/11/110302

    Article  ADS  Google Scholar 

  50. Popescu, S.: Bell’s inequalities versus teleportation: what is nonlocality? Phys. Rev. Lett. 72, 797 (1994). https://doi.org/10.1103/PhysRevLett.72.797

    Article  MathSciNet  ADS  Google Scholar 

  51. Horodecki, R., Horodecki, M., Horodecki, P.: Teleportation, Bell’s inequalities and inseparability. Phys. Lett. A 222, 21 (1996). https://doi.org/10.1016/0375-9601(96)00639-1

    Article  MathSciNet  ADS  Google Scholar 

  52. Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888 (1999). https://doi.org/10.1103/PhysRevA.60.1888

    Article  MathSciNet  ADS  Google Scholar 

  53. Badziag, P., Horodecki, M., Horodecki, P., Horodecki, R.: Local environment can enhance fidelity of quantum teleportation. Phys. Rev. A 62, 012311 (2000). https://doi.org/10.1103/PhysRevA.62.012311

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Fundamental Research Funds for the Central Universities under Grant No. 2020ZDPYMS03.

Author information

Authors and Affiliations

Authors

Contributions

L.Q. wrote the manuscript text.

Corresponding author

Correspondence to Liang Qiu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, L. Relating intrinsic concurrence to quantum steering and its application in teleportation for three-qubit states. Quantum Inf Process 23, 71 (2024). https://doi.org/10.1007/s11128-024-04276-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04276-2

Keywords

Navigation