Skip to main content
Log in

Variational quantum multidimensional scaling algorithm

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum multidimensional scaling is a quantum dimensionality reduction algorithm. Its complex quantum circuit design structure and excessive qubits consumption make it difficult to run on the current quantum computers. In order to solve this problem, this paper proposes the variational quantum multidimensional scaling algorithm based on the variational quantum algorithm. Utilizing the parallel advantages of quantum computing to quickly compute low-dimensional embeddings of high-dimensional data, the variational quantum multidimensional scaling algorithm can provide lower time complexity; compared with the non-variational quantum multidimensional scaling algorithm, the variational quantum multidimensional scaling algorithm provides a simpler quantum circuit. In the noisy intermediate scale quantum era, the algorithm can run on a quantum computer. In addition, the article finally implemented the variational quantum multidimensional scaling algorithm on the Qiskit framework, proving the correctness of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Bhatia, V., Ramkumar, K.R.: An efficient quantum computing technique for cracking RSA using Shor’s algorithm. In: 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), pp. 89–94 (2020). https://doi.org/10.1109/ICCCA49541.2020.9250806

  2. Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022). https://doi.org/10.1038/s41586-022-04940-6

    Article  ADS  Google Scholar 

  3. Yu, C.-H., Gao, F., Lin, S., Wang, J.: Quantum data compression by principal component analysis. Quantum Inf. Process. 18, 1–20 (2019). https://doi.org/10.1007/s11128-019-2364-9

    Article  MathSciNet  Google Scholar 

  4. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell. Lab. Syst. 2(1–3), 37–52 (1987). https://doi.org/10.1016/0169-7439(87)80084-9

    Article  Google Scholar 

  5. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000). https://doi.org/10.1126/science.290.5500.2323

    Article  ADS  Google Scholar 

  6. Xanthopoulos, P., Pardalos, P.M., Trafalis, T.B., Xanthopoulos, P., Pardalos, P.M., Trafalis, T.B.: Linear discriminant analysis. In: Robust Data Mining, pp. 27–33 (2013). https://doi.org/10.1007/978-1-4419-9878-1_4

  7. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Phys. Today 54(2), 60 (2001)

    Google Scholar 

  8. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009). https://doi.org/10.1103/PhysRevLett.103.150502

    Article  ADS  MathSciNet  Google Scholar 

  9. Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Commun. Math. Phys. 270, 359–371 (2007). https://doi.org/10.1007/s00220-006-0150-x

    Article  ADS  MathSciNet  Google Scholar 

  10. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014). https://doi.org/10.1038/nphys3029

    Article  Google Scholar 

  11. Cong, I., Duan, L.: Quantum discriminant analysis for dimensionality reduction and classification. New J. Phys. 18(7), 073011 (2016). https://doi.org/10.1088/1367-2630/18/7/073011

    Article  ADS  Google Scholar 

  12. Duan, B., Yuan, J., Xu, J., Li, D.: Quantum algorithm and quantum circuit for a-optimal projection: Dimensionality reduction. Phys. Rev. A 99(3), 032311 (2019). https://doi.org/10.1103/PhysRevA.99.032311

    Article  ADS  Google Scholar 

  13. He, X., Sun, L., Lyu, C., Wang, X.: Quantum locally linear embedding for nonlinear dimensionality reduction. Quantum Inf. Process. 19, 1–21 (2020). https://doi.org/10.1007/s11128-020-02818-y

    Article  MathSciNet  Google Scholar 

  14. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79

    Article  Google Scholar 

  15. Tzeng, J., Lu, H.H.-S., Li, W.-H.: Multidimensional scaling for large genomic data sets. BMC Bioinform. 9, 1–17 (2008). https://doi.org/10.1186/1471-2105-9-179

    Article  Google Scholar 

  16. Xiaoyun, H.: Research on quantum dimension reduction algorithm. In: Thesis Submitted to Nanjing University of Posts and Telecommunications for the Degree of Master of Science in Engineering, pp. 33–48 (2022). https://doi.org/10.27251/d.cnki.gnjdc.2022.001248

  17. Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S.C., Endo, S., Fujii, K., McClean, J.R., Mitarai, K., Yuan, X., Cincio, L., et al.: Variational quantum algorithms. Nat. Rev. Phys. 3(9), 625–644 (2021). https://doi.org/10.1038/s42254-021-00348-9

    Article  Google Scholar 

  18. Qiskit contributors: Qiskit: An Open-source Framework for Quantum Computing (2023). https://doi.org/10.5281/zenodo.2573505

  19. Saeed, N., Nam, H., Haq, M.I.U., Muhammad Saqib, D.B.: A survey on multidimensional scaling. ACM Comput. Surv. (CSUR) 51(3), 1–25 (2018). https://doi.org/10.1145/3178155

  20. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  21. Barenco, A., Berthiaume, A., Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C.: Stabilization of quantum computations by symmetrization. SIAM J. Comput. 26(5), 1541–1557 (1997). https://doi.org/10.1137/S00975397963024

    Article  MathSciNet  Google Scholar 

  22. Schuld, M., Petruccione, F.: Supervised Learning with Quantum Computers, vol. 17. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-96424-9

    Book  Google Scholar 

  23. Schuld, M.: Quantum machine learning models are kernel methods (2021). arXiv preprint arXiv:2101.11020.

  24. Araujo, I.F., Park, D.K., Ludermir, T.B., Oliveira, W.R., Petruccione, F., Silva, A.J.: Configurable sublinear circuits for quantum state preparation. Quantum Inf. Process. 22(2), 123 (2023). https://doi.org/10.1007/s11128-023-03869-7

    Article  ADS  MathSciNet  Google Scholar 

  25. Ghosh, K.: Encoding classical data into a quantum computer. arXiv preprint arXiv:2107.09155 (2021). https://doi.org/10.48550/arXiv.2107.09155

  26. Havlíček, V., Córcoles, A.D., Temme, K., Harrow, A.W., Kandala, A., Chow, J.M., Gambetta, J.M.: Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209–212 (2019). https://doi.org/10.1038/s41586-019-0980-2

    Article  ADS  Google Scholar 

  27. LaRose, R., Coyle, B.: Robust data encodings for quantum classifiers. Phys. Rev. A 102(3), 032420 (2020). https://doi.org/10.1103/PhysRevA.102.032420

    Article  ADS  Google Scholar 

  28. Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Adv. Quantum Technol. 2(12), 1900070 (2019). https://doi.org/10.1002/qute.201900070

    Article  Google Scholar 

  29. Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549(7671), 242–246 (2017). https://doi.org/10.1038/nature23879

    Article  ADS  Google Scholar 

  30. Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99, 032331 (2019). https://doi.org/10.1103/PhysRevA.99.032331

    Article  ADS  Google Scholar 

  31. Stokes, J., Izaac, J., Killoran, N., Carleo, G.: Quantum natural gradient. Quantum 4, 269 (2020). https://doi.org/10.22331/q-2020-05-25-269

    Article  Google Scholar 

  32. Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Autom. Control 37(3), 332–341 (1992). https://doi.org/10.1109/9.119632

    Article  MathSciNet  Google Scholar 

  33. Powell, M.J.: A Direct Search Optimization Method that Models the Objective and Constraint Functions by Linear Interpolation. Springer, Dordrecht (1994). https://doi.org/10.1007/978-94-015-8330-5_4

    Book  Google Scholar 

  34. Rahutomo, F., Kitasuka, T., Aritsugi, M.: Semantic cosine similarity. In: The 7th International Student Conference on Advanced Science and Technology ICAST, vol. 4, p. 1 (2012)

  35. He, X., Zhang, A., Zhao, S.: Quantum locality preserving projection algorithm. Quantum Inf. Process. 21(3), 86 (2022). https://doi.org/10.1007/s11128-022-03424-w

    Article  ADS  MathSciNet  Google Scholar 

  36. Wossnig, L., Zhao, Z., Prakash, A.: Quantum linear system algorithm for dense matrices. Phys. Rev. Lett. 120(5), 050502 (2018). https://doi.org/10.1103/PhysRevLett.120.050502

    Article  ADS  MathSciNet  Google Scholar 

  37. Xin, T., Che, L., Xi, C., Singh, A., Nie, X., Li, J., Dong, Y., Lu, D.: Experimental quantum principal component analysis via parametrized quantum circuits. Phys. Rev. Lett. 126(11), 110502 (2021). https://doi.org/10.1103/PhysRevLett.126.110502

    Article  ADS  Google Scholar 

  38. Volkoff, T.J., Subaşı, Y.: Ancilla-free continuous-variable swap test. Quantum 6, 800 (2022). https://doi.org/10.22331/q-2022-09-08-800

    Article  Google Scholar 

  39. McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9(1), 4812 (2018). https://doi.org/10.1038/s41467-018-07090-4

    Article  ADS  Google Scholar 

  40. Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022). https://doi.org/10.1103/PRXQuantum.3.010313

    Article  ADS  Google Scholar 

  41. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015). https://proceedings.mlr.press/v37/ioffe15.html

  42. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  ADS  Google Scholar 

  43. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  44. Marrero, C.O., Kieferová, M., Wiebe, N.: Entanglement-induced barren plateaus. PRX. Quantum 2(4), 040316 (2021). https://doi.org/10.1103/PRXQuantum.2.040316

    Article  Google Scholar 

  45. Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019). https://doi.org/10.22331/q-2019-12-09-214

    Article  Google Scholar 

  46. Skolik, A., McClean, J.R., Mohseni, M., Smagt, P., Leib, M.: Layerwise learning for quantum neural networks. Quantum Mach. Intell. 3, 1–11 (2021). https://doi.org/10.1007/s42484-020-00036-4

    Article  Google Scholar 

  47. Campos, E., Nasrallah, A., Biamonte, J.: Abrupt transitions in variational quantum circuit training. Phys. Rev. A 103(3), 032607 (2021). https://doi.org/10.1103/PhysRevA.103.032607

    Article  ADS  MathSciNet  Google Scholar 

  48. Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural networks. Nat. Phys. 15(12), 1273–1278 (2019). https://doi.org/10.1038/s41567-019-0648-8

    Article  Google Scholar 

  49. Pesah, A., Cerezo, M., Wang, S., Volkoff, T., Sornborger, A.T., Coles, P.J.: Absence of barren plateaus in quantum convolutional neural networks. Phys. Rev. X 11(4), 041011 (2021). https://doi.org/10.1103/PhysRevX.11.041011

    Article  Google Scholar 

  50. Grant, E., Benedetti, M., Cao, S., Hallam, A., Lockhart, J., Stojevic, V., Green, A.G., Severini, S.: Hierarchical quantum classifiers. npj Quantum Inf. 4(1), 65 (2018). https://doi.org/10.1038/s41534-018-0116-9

    Article  ADS  Google Scholar 

  51. Zhang, K., Hsieh, M.-H., Liu, L., Tao, D.: Toward trainability of quantum neural networks. arXiv preprint arXiv:2011.06258 (2020). https://doi.org/10.48550/arXiv.2011.06258

  52. Martín, E.C., Plekhanov, K., Lubasch, M.: Barren plateaus in quantum tensor network optimization. Quantum 7, 974 (2023). https://doi.org/10.22331/q-2023-04-13-974

    Article  Google Scholar 

Download references

Funding

This work is supported by the Beijing Natural Science Foundation No. 4212015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, F., Guo, Y. et al. Variational quantum multidimensional scaling algorithm. Quantum Inf Process 23, 77 (2024). https://doi.org/10.1007/s11128-024-04289-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04289-x

Keywords

Navigation