Skip to main content

Advertisement

Log in

Gaussian Rényi-2 correlations in a nondegenerate three-level laser

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum correlation is a key component in various quantum information processing tasks. Decoherence process imposes limitations on achieving these quantum tasks. Therefore, understanding the behavior of quantum correlations in dissipative noisy systems is of paramount importance. Here, on the basis of the Gaussian Rényi-2 entropy, we analyze entanglement and quantum discord in a two-mode Gaussian state \(\rho _{AB}\). The mode A(B) is generated within the first (second) transition of a nondegenerate three-level cascade laser. Using realistic experimental parameters, we show that both entanglement and discord could be generated and enhanced by inducing more quantum coherence. Under thermal noise, entanglement is found more fragile having a tendency to disappear rapidly, while quantum discord exhibits a freezing behavior, where it can be captured within a wide range of temperature. Surprisingly, we find that entanglement can exceed quantum discord in contrary to the expectation based on the assumption that the former is only a part of the later. Finally, we show numerically as well as analytically that optimal quantum discord can be captured by performing Gaussian measurements on mode B. The obtained results suggest that nondegenerate three-level lasers may be a valuable resource for some quantum information tasks, especially for those who do not require entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability Statement

This manuscript has no associated data.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2019)

    Google Scholar 

  2. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    ADS  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    ADS  MathSciNet  Google Scholar 

  4. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S.L.: Advances in quantum teleportation. Nat. Photonics 9, 641 (2015)

    ADS  Google Scholar 

  5. Chen, Y., Liu, S., Lou, Y., Jing, J.: Orbital angular momentum multiplexed quantum dense coding. Phys. Rev. Lett. 127, 093601 (2021)

    ADS  Google Scholar 

  6. O’Brien, J.L.: Optical quantum computing. Science 318, 1567 (2007)

    ADS  Google Scholar 

  7. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)

    ADS  MathSciNet  Google Scholar 

  8. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using Gaussian-modulated coherent states. Nature (London) 421, 238 (2003)

    ADS  Google Scholar 

  9. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    ADS  Google Scholar 

  10. Madsen, M.L.S., Berni, A., Lassen, M., Andersen, U.L.: Experimental investigation of the evolution of Gaussian quantum discord in an open system. Phys. Rev. Lett. 109, 030402 (2012)

    ADS  Google Scholar 

  11. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    ADS  Google Scholar 

  12. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    ADS  Google Scholar 

  13. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    ADS  MathSciNet  Google Scholar 

  14. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)

    ADS  Google Scholar 

  15. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    ADS  Google Scholar 

  16. Giedke, G., Cirac, J.I.: Characterization of Gaussian operations and distillation of Gaussian states. Phys. Rev. A 66, 032316 (2002)

    ADS  Google Scholar 

  17. Adesso, G., Datta, A.: Quantum versus classical correlations in Gaussian states. Phys. Rev. Lett. 105, 030501 (2012)

    Google Scholar 

  18. Adesso, G., Girolami, D., Serafini, A.: Measuring Gaussian quantum information and correlations using the Rényi entropy of order 2. Phys. Rev. Lett. 109, 190502 (2012)

    ADS  Google Scholar 

  19. Madhok, V., Datta, A.: Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323 (2011)

    ADS  Google Scholar 

  20. Dakic, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, C., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012)

    Google Scholar 

  21. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dus̆ ek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)

  22. Salek, F., Hayashi, M., Winter, A.: Usefulness of adaptive strategies in asymptotic quantum channel discrimination. Phys. Rev. A 105, 022419 (2022)

    ADS  MathSciNet  Google Scholar 

  23. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    ADS  Google Scholar 

  24. Freitas, J.N., Paz, J.P.: Dynamics of Gaussian discord between two oscillators interacting with a common environment. Phys. Rev. A 85, 032118 (2012)

    ADS  Google Scholar 

  25. Lü, Y.-Q., An, J.-H., Chen, X.-M., Luo, H.-G., Oh, C.H.: Frozen Gaussian quantum discord in photonic crystal cavity array system. Phys. Rev. A 88, 012129 (2013)

    ADS  Google Scholar 

  26. Qars, J.E., Daoud, M., Laamara, R.A.: Quantifying quantumness of correlations using Gaussian Rényi-2 entropy in optomechanical interfaces. J. Mod. Opt. 65, 1584 (2018)

    ADS  Google Scholar 

  27. Uola, R., Costa, A.C.S., Nguyen, H.C., Gühne, O.: Quantum steering. Rev. Mod. Phys. 92, 15001 (2020)

    ADS  MathSciNet  Google Scholar 

  28. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    ADS  Google Scholar 

  29. Xiang, Y., Kogias, I., Adesso, G., He, Q.: Multipartite Gaussian steering: monogamy constraints and quantum cryptography applications. Phys. Rev. A 95, 010101(R) (2017)

    ADS  Google Scholar 

  30. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    ADS  Google Scholar 

  31. Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    ADS  MathSciNet  Google Scholar 

  32. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

    ADS  Google Scholar 

  33. Li, C.-M., Lambert, N., Chen, Y.-N., Chen, G.-Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)

    Google Scholar 

  34. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    ADS  Google Scholar 

  35. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  36. Scully, M.O., Wodkiewicz, K., Zubairy, M.S., Bergou, J., Lu, N., Meyer Ter Vehn, J.: Two-photon correlated spontaneous emission laser: quantum noise quenching and squeezing. Phys. Rev. Lett. 60, 1832 (1988)

    ADS  Google Scholar 

  37. Ansari, N.A., Gea-Banacloche, J., Zubairy, M.S.: Phase-sensitive amplification in a three-level atomic system. Phys. Rev. A 41, 5179 (1990)

    ADS  Google Scholar 

  38. Tan, H.-T., Zhu, S.-Y., Zubairy, M.S.: Continuous-variable entanglement in a correlated spontaneous emission laser. Phys. Rev. A 72, 022305 (2005)

    ADS  Google Scholar 

  39. Kapale, K.T., Scully, M.O., Zhu, S.-Y., Zubairy, M.S.: Quenching of spontaneous emission through interference of incoherent pump processes. Phys. Rev. A 67, 023804 (2003)

    ADS  Google Scholar 

  40. Tesfa, S.: Entanglement amplification in a nondegenerate three-level cascade laser. Phys. Rev. A 74, 043816 (2006)

    ADS  Google Scholar 

  41. Sete, E.A., Eleuch, H.: Anomalous optical bistability and robust entanglement of mechanical oscillators using two-photon coherence. J. Opt. Soc. Am. B 32, 971 (2015)

    ADS  Google Scholar 

  42. Ping, Y.-X., Zhang, B., Cheng, Z., Zhang, Y.-M.: Entanglement in the steady state of a two-mode three-level atomic system. Phys. Lett. A 362, 128 (2007)

    ADS  Google Scholar 

  43. Sete, E.A.: Violation of classical inequalities and EPR correlations in a two-mode three-level atomic system. Int. J. Quant. Inform. 6, 885 (2008)

    Google Scholar 

  44. Qars, J.E.: Unidirectional Gaussian one-way steering. Ann. Phys. (Berlin) 534, 2100386 (2022)

    ADS  MathSciNet  Google Scholar 

  45. Xiong, H., Scully, M.O., Zubairy, M.S.: Correlated spontaneous emission laser as an entanglement amplifier. Phys. Rev. Lett. 94, 023601 (2005)

    ADS  Google Scholar 

  46. Alebachew, E.: Continuous-variable entanglement in a nondegenerate three-level laser with a parametric oscillator. Phys. Rev. A 76, 023808 (2007)

    ADS  Google Scholar 

  47. Bekele, M., Yirgashewa, T., Tesfa, S.: Entanglement of mechanical modes in a doubly resonant optomechanical cavity of a correlated emission laser. Phys. Rev. A 107, 012417 (2023)

    ADS  MathSciNet  Google Scholar 

  48. Simon, R.: Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000)

    ADS  Google Scholar 

  49. Duan, L.-M., Giedke, G., Cirac, J.I., Zoller, P.: Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722 (2000)

    ADS  Google Scholar 

  50. Fesseha, F.: Three-level laser dynamics with squeezed light. Phys. Rev. A 63, 033811 (2001)

    ADS  Google Scholar 

  51. Lu, N., Zhu, S.Y.: Quantum theory of two-photon correlated-spontaneous-emission lasers: exact atom-field interaction Hamiltonian approach. Phys. Rev. A 40, 5735 (1989)

    ADS  Google Scholar 

  52. Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, New York (1973)

    Google Scholar 

  53. Akramine, O.E., Makhoute, A., Zitane, M., Tij, M.: Theoretical study of quantum dissipation and laser-noise effects on the atomic response. Phys. Rev. A 58, 4892 (1998)

    ADS  Google Scholar 

  54. Sargent, M. III., Scully, M. O., Lamb, Jr. M. E.: Laser Physics. Addison-Wesley, Reading, Mass (1974)

  55. Qars, J.E.: Total versus quantum correlations in a two-mode Gaussian state. Commun. Theor. Phys. 73, 055103 (2021)

    ADS  MathSciNet  Google Scholar 

  56. Rényi, A.: in Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability. University of California Press, Berkeley (1960)

  57. Vedral, V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197 (2002)

    ADS  MathSciNet  Google Scholar 

  58. Rastegin, A.E.: Rényi formulation of entanglement criteria for continuous variables. Phys. Rev. A 95, 042334 (2017)

    ADS  Google Scholar 

  59. Schumacher, B., Westmoreland, M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A 74, 042305 (2006)

    ADS  Google Scholar 

  60. Groisman, B., Popescu, S., Winter, A.: Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005)

    ADS  MathSciNet  Google Scholar 

  61. Meschede, D., Walther, H., Muller, G.: One-atom maser. Phys. Rev. Lett. 54, 551 (1985)

    ADS  Google Scholar 

  62. He, Q.Y., Gong, Q.H., Reid, M.D.: Classifying directional Gaussian entanglement, Einstein-Podolsky-Rosen steering, and discord. Phys. Rev. Lett. 114, 060402 (2015)

    ADS  Google Scholar 

  63. Reiserer, A., Rempe, G.: Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379 (2015)

    ADS  Google Scholar 

  64. McKeever, J., Boca, A., Boozer, A.D., Miller, R., Buck, J.R., Kuzmich, A., Kimble, H.J.: Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992 (2004)

    ADS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

There is only one author: JEQ Thanks

Corresponding author

Correspondence to Jamal El Qars.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qars, J.E. Gaussian Rényi-2 correlations in a nondegenerate three-level laser. Quantum Inf Process 23, 83 (2024). https://doi.org/10.1007/s11128-024-04294-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04294-0