Skip to main content
Log in

Parallelized variational quantum classifier with shallow QRAM circuit

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we present a novel quantum variational circuit, harnessing the capabilities of a pre-determined quantum random access memory (QRAM) circuit to enhance machine learning tasks. Our approach enables parallel training on entire datasets, facilitated by QRAM’s streamlined data loading onto qubits through probability amplitudes. This leads to a logarithmic reduction in the qubit width (number of qubits) concerning data dimension and dataset size. Our model is adaptable to various loss functions, rendering it suitable for binary and multi-class classification tasks. To validate our methodology, we conducted numerical simulations using well-established benchmark datasets, Iris and handwritten digits, with the Pennylane platform. Impressively, our approach yielded high classification accuracy in these illustrations. This work demonstrates promising potential for quantum machine learning applications, especially when dealing with large datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195–202 (2017)

    Article  ADS  Google Scholar 

  2. Ciliberto, C., Herbster, M., Ialongo, A.D., Pontil, M., Rocchetto, A., Severini, S., Wossnig, L.: Quantum machine learning: a classical perspective. Proc. Royal Soc. A Math. Phys. Eng. Sci. 474(2209), 20170551 (2018)

    ADS  MathSciNet  Google Scholar 

  3. Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Physical Rev. Lett. 109(5), 050505 (2012)

    Article  ADS  Google Scholar 

  4. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big feature and big data classification. Physical Rev. Lett. 113(13), 130503 (2013)

    Article  Google Scholar 

  5. Duan, B., Yuan, J., Liu, Y., Li, D.: Quantum algorithm for support matrix machines. Physical Rev. A 96(3), 032301 (2017)

    Article  ADS  Google Scholar 

  6. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 108–1131 (2014)

    Article  Google Scholar 

  7. Kerenidis, I., Prakash, A.: Quantum Recommendation Systems. In: 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), 67, 49–14921 (2017)

  8. Duan, B., Yuan, J., Yu, C.-H., Huang, J., Hsieh, C.-Y.: A survey on hhl algorithm: From theory to application in quantum machine learning. Phys. Lett. A 384(24), 126595 (2020)

    Article  MathSciNet  Google Scholar 

  9. Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  10. Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameterized quantum circuits as machine learning models. Quant. Sci. Technol. 4(4), 043001 (2019)

    Article  ADS  Google Scholar 

  11. Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Code/Software sharing not applicable to this article as nocode/software was generated or analysed during the current study.Circuit-centric quantum classifiers. Physical Rev. A 101(3), 032308 (2020)

    Google Scholar 

  12. Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020)

    Article  Google Scholar 

  13. Grant, E., Benedetti, M., Cao, S., Hallam, A., Lockhart, J., Stojevic, V., Green, A.G., Severini, S.: Hierarchical quantum classifiers. npj Quant. Inf. 4(1), 65 (2018)

    Article  ADS  Google Scholar 

  14. LaRose, R., Coyle, B.: Robust data encodings for quantum classifiers. Physical Rev. A 102(3), 032420 (2020)

    Article  ADS  Google Scholar 

  15. Abbas, A., Schuld, M., Petruccione, F.: On quantum ensembles of quantum classifiers. Quant. Mach. Intell. 2, 1–8 (2020)

    Google Scholar 

  16. Adhikary, S.: Entanglement assisted training algorithm for supervised quantum classifiers. Quant. Inf. Proc. 20(8), 254 (2021)

    Article  MathSciNet  Google Scholar 

  17. Fan, L., Situ, H.: Compact data encoding for data re-uploading quantum classifier. Quant. Inf. Proc. 21(3), 87 (2022)

    Article  MathSciNet  Google Scholar 

  18. Bai, Q., Hu, X.: Quantity study on a novel quantum neural network with alternately controlled gates for binary image classification. Quant. Inf. Proc. 22(5), 184 (2023)

    Article  MathSciNet  Google Scholar 

  19. Sun, X., Tian, G., Yang, S., Yuan, P., Zhang, S.: Asymptotically optimal circuit depth for quantum state preparation and general unitary synthesis. arXiv, preprint arXiv:2108.06150 (2021)

  20. Zhang, X.-M., Yung, M.-H., Yuan, X.: Low-depth quantum state preparation. Physical Rev. Res. 3(4), 043200 (2021)

    Article  ADS  Google Scholar 

  21. Nakaji, K., Uno, S., Suzuki, Y., Raymond, R., Onodera, T., Tanaka, T., Tezuka, H., Mitsuda, N., Yamamoto, N.: Approximate amplitude encoding in shallow parameterized quantum circuits and its application to financial market indicators. Physical Rev. Res. 4(2), 023136 (2022)

    Article  ADS  Google Scholar 

  22. Möttönen, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.: Transformation of quantum states using uniformly controlled rotations. Quant. Inf. Comput. 5 (2005)

  23. Zhang, X.-M., Li, T., Yuan, X.: Quantum state preparation with optimal circuit depth: Implementations and applications. arXiv preprint arXiv:2201.11495 (2022)

  24. Johri, S., Debnath, S., Mocherla, A., Singk, A., Prakash, A., Kim, J., Kerenidis, I.: Nearest centroid classification on a trapped ion quantum computer. npj Quant. Inf. 7(1), 1–11 (2021)

    Google Scholar 

  25. Araujo, I.F., Park, D.K., Petruccione, F., Silva, A.J.: A divide-and-conquer algorithm for quantum state preparation. Scientific Rep. 11(1), 1–12 (2021)

    Google Scholar 

  26. Shirakawa, T., Ueda, H., Yunoki, S.: Automatic quantum circuit encoding of a given arbitrary quantum state. arXiv preprint arXiv:2112.14524 (2021)

  27. Marin-Sanchez, G., Gonzalez-Conde, J., Sanz, M.: Quantum algorithms for approximate function loading. arXiv preprint arXiv:2111.07933 (2021)

  28. Romero, J., Aspuru-Guzik, A.: Variational quantum generators: Generative adversarial quantum machine learning for continuous distributions. Adv. Quant. Technol. 4(1), 2000003 (2021)

    Article  Google Scholar 

  29. Zoufal, C., Lucchi, A., Woerner, S.: Quantum generative adversarial networks for learning and loading random distributions. npj Quant. Inf. 5(1), 1–9 (2019)

    Google Scholar 

  30. Gomez, A.M., Yelin, S.F., Najafi, K.: Reconstructing quantum states using basis-enhanced born machines. arXiv preprint arXiv:2206.01273 (2022)

  31. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Physical Rev. Lett. 100(16), 160501 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  32. Giovannetti, V., Lloyd, S., Maccone, L.: Architectures for a quantum random access memory. Physical Rev. A 78(5), 052310 (2008)

    Article  ADS  Google Scholar 

  33. Hong, F.-Y., Xiang, Y., Zhu, Z.-Y., Jiang, L.-z., Wu, L.-n.: Robust quantum random access memory. Physical Rev. A 86(1), 010306 (2012)

  34. Hann, C.T., Zou, C.-L., Zhang, Y., Chu, Y., Schoelkopf, R.J., Girvin, S.M., Jiang, L.: Hardware-efficient quantum random access memory with hybrid quantum acoustic systems. Physical Rev. Lett. 123(25), 250501 (2019)

    Article  ADS  Google Scholar 

  35. Sun, X., Tian, G., Yang, S., Yuan, P., Zhang, S.: Asymptotically optimal circuit depth for quantum state preparation and general unitary synthesis. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2023)

  36. Zhang, X.-M., Li, T., Yuan, X.: Quantum state preparation with optimal circuit depth: Implementations and applications. Physical Rev. Lett. 129(23), 230504 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  37. Niu, M.Y., Zlokapa, A., Broughton, M., Boixo, S., Mohseni, M., Smelyanskyi, V., Neven, H.: Entangling quantum generative adversarial networks. Physical Rev. Lett. 128(22), 220505 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  38. Phalak, K., Li, J., Ghosh, S.: Trainable pqc-based qram for quantum storage. IEEE Access (2023)

  39. Duan, B., Hsieh, C.-Y.: Hamiltonian-based data loading with shallow quantum circuits. Physical Rev. A 106(5), 052422 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  40. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik, A., O’brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1), 1–7 (2014)

  41. Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Alam, M.S., Ahmed, S., Arrazola, J.M., Blank, C., Delgado, A., Jahangiri, S., et al.: Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv preprint arXiv:1811.04968 (2018)

  42. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

  43. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Download references

Acknowledgements

This work was supported by the Funding of National Natural Science Foundation of China (Grant No. 62101270).

Author information

Authors and Affiliations

Authors

Contributions

Bojia Duan and Chang-Yu Hsieh contributed to the study conception and design. Bojia Duan and Xin Sun conducted simulations and analyses. Bojia Duan wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Bojia Duan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, B., Sun, X. & Hsieh, CY. Parallelized variational quantum classifier with shallow QRAM circuit. Quantum Inf Process 23, 92 (2024). https://doi.org/10.1007/s11128-024-04295-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04295-z

Keywords

Navigation