Skip to main content
Log in

Generation of five-photon hyperentangled cluster state with three-photon GHZ state and Bell state via weak cross-Kerr nonlinearity

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a scheme for generating a five-photon hyperentangled spatial-polarization cluster state based on weak cross-Kerr nonlinearity. Using Bell state and three-photon GHZ state as the initial states, this hyperentangled state in two degrees of freedom is generated. The success probability of our scheme can reach 100% without considering experimental conditions. Additionally, we apply a simpler and deterministic controlled-NOT gate in our scheme. Finally, we discuss the error probability of X-homodyne detection and the feasibility of implementing the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Wang, C., Deng, F.-G., Li, Y.-S., Liu, X.-S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    ADS  Google Scholar 

  2. Zhu, A.-D., Xia, Y., Fan, Q.-B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)

    ADS  Google Scholar 

  3. Zhang, W., Ding, D.-S., Sheng, Y.-B., Zhou, L., Shi, B.-S., Guo, G.-C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    ADS  Google Scholar 

  4. Chen, S.-S., Zhou, L., Zhong, W., Sheng, Y.-B.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61, 1–5 (2018)

    ADS  Google Scholar 

  5. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    ADS  Google Scholar 

  6. Li, X.-H., Ghose, S.: Hyperentangled bell-state analysis and hyperdense coding assisted by auxiliary entanglement. Phys. Rev. A 96, 020303 (2017)

    ADS  Google Scholar 

  7. Wang, X.-L., Cai, X.-D., Zu-En, S., Chen, M.-C., Dian, W., Li, L., Liu, N.-L., Chao-Yang, L., Pan, J.-W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015)

    ADS  Google Scholar 

  8. Chen, J., Li, D., Liu, M., Yang, Y.: Bidirectional quantum teleportation by using a four-qubit ghz state and two bell states. IEEE Access 8, 28925–28933 (2020)

    Google Scholar 

  9. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    ADS  Google Scholar 

  10. Bai, C.-M., Li, Z.-H., Liu, C.-J., Li, Y.-M.: Quantum secret sharing using orthogonal multiqudit entangled states. Quantum Inf. Process. 16, 1–18 (2017)

    MathSciNet  Google Scholar 

  11. Han, X., Shi, H., Guo, Q., Wang, H.-F., Zhang, S.: Effective scheme for w-state fusion with weak cross-Kerr nonlinearities. Quantum Inf. Process. 14, 1919–1932 (2015)

    ADS  Google Scholar 

  12. Xia, Y., Chen, Q.-Q., Song, J., Song, H.-S.: Efficient hyperentangled Greenberger-Horne-Zeilinger states analysis with cross-Kerr nonlinearity. JOSA B 29, 1029–1037 (2012)

    ADS  Google Scholar 

  13. Zheng, Y.-B., Zhou, X.-J., Wei, H.-R., Fang-Fang, D., Song, G.-Z.: Schemes for fusing photonic w-state simultaneously without qubit loss via weak cross-Kerr nonlinearities. Quantum Inf. Process. 20, 273 (2021)

    ADS  MathSciNet  Google Scholar 

  14. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001)

    ADS  Google Scholar 

  15. Kiesel, N., Schmid, C., Tóth, G., Solano, E., Weinfurter, H.: Experimental observation of four-photon entangled Dicke state with high fidelity. Phys. Rev. Lett. 98, 063604 (2007)

    ADS  Google Scholar 

  16. Brown, I.D.K., Stepney, S., Sudbery, A., Braunstein, S.L.: Searching for highly entangled multi-qubit states. J. Phys. A: Math. Gen. 38, 1119 (2005)

    ADS  MathSciNet  Google Scholar 

  17. Zhao, C., Zhu, M., Ye, L.: Robust scheme for the preparation of polarization-photon cluster state with homodyne measurement via weak cross-Kerr nonlinearity. JOSA B 28, 1740–1745 (2011)

    ADS  Google Scholar 

  18. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    ADS  Google Scholar 

  19. Liu, H.-J., Fan, L.-L., Xia, Y., Song, J.: Efficient entanglement concentration for partially entangled cluster states with weak cross-Kerr nonlinearity. Quantum Inf. Process. 14, 2909–2928 (2015)

    ADS  MathSciNet  Google Scholar 

  20. Shi-Lei, S., Wang, Y., Guo, Q., Wang, H.-F., Zhang, S.: Generating a four-photon polarization-entangled cluster state with homodyne measurement via cross-Kerr nonlinearity. Chin. Phys. B 21, 044205 (2012)

    ADS  Google Scholar 

  21. Kiesel, N., Schmid, C., Weber, U., Tóth, G., Gühne, O., Ursin, R., Weinfurter, H.: Experimental analysis of a four-qubit photon cluster state. Phys. Rev. Lett. 95, 210502 (2005)

    ADS  Google Scholar 

  22. Tokunaga, Y., Kuwashiro, S., Yamamoto, T., Koashi, M., Imoto, N.: Generation of high-fidelity four-photon cluster state and quantum-domain demonstration of one-way quantum computing. Phys. Rev. Lett. 100, 210501 (2008)

    ADS  Google Scholar 

  23. Xiaolong, S., Tan, A., Jia, X., Zhang, J., Xie, C., Peng, K.: Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables. Phys. Rev. Lett. 98, 070502 (2007)

    Google Scholar 

  24. Nengkun, Yu., Guo, C., Duan, R.: Obtaining a w state from a Greenberger-Horne-Zeilinger state via stochastic local operations and classical communication with a rate approaching unity. Phys. Rev. Lett. 112, 160401 (2014)

    Google Scholar 

  25. Shen, C.-P., Gao, Y., Shi-Lei, S., Mao, Y., Liang, E., Chen, S.: Mutual conversions between Knill-Laflamme-Milburn and W states. Ann. Phys. 530, 1800114 (2018)

    Google Scholar 

  26. Ji, Y.Q., Shao, X.Q., Yi, X.X.: Conversion of entangled states with nitrogen-vacancy centers coupled to microtoroidal resonators. Opt. Express 25, 15806–15817 (2017)

    ADS  Google Scholar 

  27. Yang, C., Li, D.X., Shao, X.Q.: Dissipative preparation of bell states with parallel quantum zeno dynamics. Sci. China Phys. Mech. Astron. 62, 110312 (2019)

    ADS  Google Scholar 

  28. Macrì, V., Nori, F.: and Anton Frisk Kockum, Simple preparation of bell and Greenberger-Horne-Zeilinger states using ultrastrong-coupling circuit qed. Phys. Rev. A 98, 062327 (2018)

    ADS  Google Scholar 

  29. Jin, G.-S., Lin, Y., Biao, W.: Generating multiphoton Greenberger-Horne-Zeilinger states with weak cross-Kerr nonlinearity. Phys. Rev. A 75, 054302 (2007)

    ADS  Google Scholar 

  30. Zheng, C.-H., Zhao, J., Shi, P., Li, W.-D., Yong-Jian, G.: Generation of three-photon polarization-entangled ghz state via linear optics and weak cross-Kerr nonlinearity. Opt. Commun. 316, 26–30 (2014)

    ADS  Google Scholar 

  31. Kok, P., Lovett, B.W.: Introduction to Optical Quantum Information Processing. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  32. Jiao, X.-F., Zhou, P., Lv, S.-X.: Remote implementation of single-qubit operations via hyperentangled states with cross-Kerr nonlinearity. JOSA B 36, 867–875 (2019)

    ADS  Google Scholar 

  33. Wu, F., Yang, G., Wang, H., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 1–7 (2017)

    ADS  Google Scholar 

  34. Li, X.-H., Ghose, S.: Hyperentanglement concentration for time-bin and polarization hyperentangled photons. Phys. Rev. A 91, 062302 (2015)

    ADS  Google Scholar 

  35. Li, X.-H., Ghose, S.: Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity. Phys. Rev. A 93, 022302 (2016)

    ADS  Google Scholar 

  36. Zheng, H., Zhou, L., Zhong, W., Sheng, Y.-B.: Generation of an arbitrary logic w state with cross-Kerr nonlinearities. Laser Phys. Lett. 17, 115203 (2020)

    ADS  Google Scholar 

  37. Xiu, X.-M., Cui, C., Geng, X., Wang, S.-L., Li, Q.-Y., Dong, H.-K., Dong, L., Gao, Y.-J.: Constructing the nearly deterministic Toffoli polarization gate with the spatial degree of freedom based on weak cross-Kerr nonlinearities. Opt. Commun. 426, 308–312 (2018)

    ADS  Google Scholar 

  38. Fan, L.-L., Xia, Y., Song, J.: Complete hyperentanglement-assisted multi-photon Greenberger-Horne-Zeilinger states analysis with cross-Kerr nonlinearity. Opt. Commun. 317, 102–106 (2014)

    ADS  Google Scholar 

  39. Sheng, Y.-B., Zhou, L.: Quantum entanglement concentration based on nonlinear optics for quantum communications. Entropy 15, 1776–1820 (2013)

    ADS  MathSciNet  Google Scholar 

  40. Sheng, Y.-B., Deng, F.-G., Zhao, B.-K., Wang, T.-J., Zhou, H.-Y.: Multipartite entanglement purification with quantum nondemolition detectors. Eur. Phys. J. D 55, 235–242 (2009)

    ADS  Google Scholar 

  41. Imoto, N., Haus, H.A., Yamamoto, Y.: Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287 (1985)

    ADS  Google Scholar 

  42. Barrett, S.D., Kok, P.: Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060310 (2005)

    ADS  Google Scholar 

  43. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-not gate. Phys. Rev. Lett. 93, 250502 (2004)

    ADS  Google Scholar 

  44. Lin, Q., Li, J.: Quantum control gates with weak cross-Kerr nonlinearity. Phys. Rev. A 79, 022301 (2009)

    ADS  Google Scholar 

  45. Lin, Q., He, B.: Single-photon logic gates using minimal resources. Phys. Rev. A 80, 042310 (2009)

    ADS  Google Scholar 

  46. Xiu, X.-M., Dong, L., Gao, Y.-J., Yi, X.X.: Nearly deterministic controlled-not gate with weak cross-Kerr nonlinearities. Quantum Inf. Comput. 12, 159–170 (2012)

    MathSciNet  Google Scholar 

  47. Heo, J., Hong, C.-H., Lim, J.-I., Yang, H.-J.: Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity. Chin. Phys. B 24, 050304 (2015)

    ADS  Google Scholar 

  48. Liu, A.-P., Cheng, L.-Y., Guo, Q., Zhang, S., Zhao, M.-X.: Universal quantum gates for hybrid system assisted by atomic ensembles embedded in double-sided optical cavities. Sci. Rep. 7, 43675 (2017)

    ADS  Google Scholar 

  49. Dong, L., Wang, J.-X., Li, Q.-Y., Shen, H.-Z., Dong, H.-K., Xiu, X.-M., Gao, Y.-J., Oh, C.H.: Nearly deterministic preparation of the perfect w state with weak cross-Kerr nonlinearities. Phys. Rev. A 93, 012308 (2016)

    ADS  Google Scholar 

  50. Pieter, K., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)

    ADS  Google Scholar 

  51. Wang, C., Li, Y.S., Hao, L.: Optical implementation of quantum random walks using weak cross-Kerr media. Chin. Sci. Bull. 56, 2088–2091 (2011)

    Google Scholar 

  52. Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)

    ADS  Google Scholar 

  53. Gea-Banacloche, J.: Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81, 043823 (2010)

    ADS  Google Scholar 

  54. Shapiro, J.H.: Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73, 062305 (2006)

    ADS  Google Scholar 

  55. Lukin, M.D., Imamoğlu, A.: Controlling photons using electromagnetically induced transparency. Nature 413, 273–276 (2001)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12247214), the Liaoning Revitalization Talents Program (XLYC1807206), the LiaoNing BaiQianWan Talents Program (2021921096), the Natural Science Foundation of Liaoning Province (2021-MS-317, 2022-MS-372), and the Education Administration Program of Liaoning Province (LJKZ1015, LJKZZ20220120, JYTMS20231614).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Dong or Xiao-Ming Xiu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, LJ., Zhao, ZL., Yuan, ZQ. et al. Generation of five-photon hyperentangled cluster state with three-photon GHZ state and Bell state via weak cross-Kerr nonlinearity. Quantum Inf Process 23, 129 (2024). https://doi.org/10.1007/s11128-024-04301-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04301-4

Keywords

Navigation