Abstract
In this paper, we are interested in right (resp., left) quasi-polycyclic (QP) codes of length \(n=m\ell \) with an associated vector \(a=(a_0,a_1,\ldots , a_{m-1})\in {\mathbb {F}}_{q}^{^m}\), which are a generalization of quasi-cyclic codes (QC) and quasi-twisted (QT) codes. They are defined as invariant subspaces of \({\mathbb {F}}_{_q}^{^{n}} \) by the right (resp., left) QP operator \(\widetilde{T}_{\overrightarrow{a}}\) (resp., \(\widetilde{T}_{\overleftarrow{a}}\)). A correspondence between the right (resp., left) \(\ell \)-QP codes and the linear codes of length \( \ell \) over the ring \(R_{{\overrightarrow{a},m}}:={\mathbb {F}}_{q}[x] / \left\langle x^m-\overrightarrow{a}(x)\right\rangle ,\ \overrightarrow{a}(x)=\sum _{i=0}^{m-1}a_ix^i\) (resp., \( R_{{\overleftarrow{a},m}}:={\mathbb {F}}_{q}[x] /\left\langle x^m-\overleftarrow{a}(x)\right\rangle \), \(\overleftarrow{a}(x)=\sum _{i=0}^{n-1}a_ix^{m-1-i}\)) is given. This correspondence leads to some basic characterizations of these codes such as generator and parity check polynomials. Moreover, we also discuss the structure of the 1-generator QP codes, and we prove BCH-like and the Hartmann–Tzeng-like bounds on the minimum distance of QP codes. Finally, we give examples of new quantum codes derived from QP codes as an application of some of the results. Several of these codes are MDS.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ackerman, R., Aydin, N.: New quinary linear codes from quasi-twisted codes and their duals. Appl. Math. Lett. 24(4), 512–515 (2011)
Akre, D., Aydin, N., Harrington, M. J., Pandey, S. R.: New binary and ternary quasi-cyclic codes with good properties, (2021) arxiv preprint arXiv:2108.06752
Alahmadi, A., Dougherty, S., Leroy, A., Solé, P.: On the duality and the direction of polycyclic codes. Adv. Math. Commun. 10(4), 921–929 (2016)
Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)
Aydin, N., Liu, P., Yoshino, B.: A database of quantum codes, (2021) http://quantumcodes.info/. Accessed on 2023–07–10
Aydin, N., Liu, P., Yoshino, B.: Polycyclic codes associated with trinomials: good codes and open questions (2022). https://doi.org/10.1007/s10623-022-01038-y
Aydin, N., Siap, I.: New quasi-cyclic codes over \({{\mathbb{F} }}_5\). Appl. Math. Lett. 15(7), 833–836 (2002)
Aydin, N., Siap, I., Ray-Chaudhuri, D.K.: The structure of 1-generator quasi-twisted codes and new linear codes. Des. Codes Crypt. 24, 313–326 (2001)
Barbier, M., Chabot, C., Quintin, G.: On quasi-cyclic codes as a generalization of cyclic codes. Finite Fields Their Appl. 18, 904–919 (2012)
Bierbrauer, J., Edel, Y.: Some good quantum twisted codes, (2020) https://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html. Accessed on 2023–07–10
Boudine, B., Laaouine, J.: Polycyclic codes over \({\mathbb{F} }_{p^{m}} [u]/\langle u^{2}\rangle \): classification, Hamming distance, and annihilators. Finite Fields Their Appl. 88, 102188 (2023)
Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. 54, 1098 (1996)
Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)
Cao, M., Cui, J.: Construction of new quantum codes via Hermitian dual-containing matrix-product codes. Quantum Inf. Process. 19, 427 (2020). https://doi.org/10.1007/s11128-020-02921-0
Daskalov, R.M., Aaron Gulliver, T.: New good quasi-cyclic ternary and quaternary linear codes. IEEE Trans. Inf. Theory 43(5), 1647–1650 (1997)
Daskalov, R., Hristov, P.: New quasi-twisted degenerate ternary linear codes. IEEE Trans. Inf. Theory 49(9), 2259–2263 (2008)
Daskalov, R., Hristov, P.: Some new quasi-twisted ternary linear codes. J. Algebra Comb. Discrete Struct. Appl. 2(3), 211–216 (2015)
Grassl, M.: Code tables: bounds on the parameters of of codes, http://www.codetables.de/. Accessed on 2023–07–10
Grassl, M.: New quantum codes from CSS codes. Quantum Inf. Process. 22, 86 (2023). https://doi.org/10.1007/s11128-023-03835-3
Huffuman, W.C., Pless, V.: Fundermentals of Error Correcting Codes. Cambridge University Press, Cambridge (2003)
Kasami, T.: A Gilbert-Varshamov bound for quasi-cycle codes of rate 1/2 (Corresp.). IEEE Trans. Inf. Theory 20(5), 679–679 (1974)
Lally, K., Fitzpatrick, P.: Algebraic structure of quasi-cyclic codes. Discr. Appl. Math. 111, 157–175 (2001)
Lidl, R.L., Niederreiter, H.: Introduction to Finite Fields and their Applications, rev Cambridge University Press, Cambridge (1987)
Lin, L., Zhang, Y., Hou, X., et al.: New MDS EAQECCs from constacyclic codes over finite non-chain rings. Quantum Inf. Process. 22, 250 (2023). https://doi.org/10.1007/s11128-023-04007-z
Liu, X., Hu, P.: New quantum codes from two linear codes. Quantum Inf. Process. 19, 78 (2020). https://doi.org/10.1007/s11128-020-2575-0
Liu, X., Liu, H.: Quantum codes from linear codes over finite chain rings. Quantum Inf. Process. 16, 240 (2017). https://doi.org/10.1007/s11128-017-1695-7
Lopez-Permouth, S.R., Parra-Avila, B.R., Szabo, S.: Dual generalizations of the concept of cyclicity of codes. Adv. Math. Commun. 3(3), 227–234 (2009)
Ou-azzou, H., Najmeddine, M.: On the Algebraic structure of Polycyclic Codes. Filomat 35(10), 3407–3421 (2021)
Peterson, W.W., Weldon, E.J.: Error Correcting Codes. MIT Press, Cambridge (1972)
Prakash, O., Verma, R.K., Singh, A.: Quantum and LCD codes from skew constacyclic codes over a finite non-chain ring. Quantum Inf. Process. 22, 200 (2023). https://doi.org/10.1007/s11128-023-03951-0
Prange, E.: Cyclic Error-correcting Codes in Two Symbols, Air Force Cambridge Research Center (1957)
Roos, C.: A generalization of the BCH bound for cyclic codes including the Hartmann–Tzeng bound. J. Comb. Theory Ser. A 33, 229–232 (1982)
Séguin, G.: A class of 1-generator quasi-cyclic codes. IEEE Trans. Inform. Theory 50, 1745–1753 (2004)
Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 79 (1996)
Tang, Y., Zhu, S., Kai, X., et al.: New quantum codes from dual-containing cyclic codes over finite rings. Quantum Inf. Process. 15, 4489–4500 (2016). https://doi.org/10.1007/s11128-016-1426-5
Thomas, K.: Polynomial approach to quasi-cyclic codes. Bul. Cal. Math. Soc. 69, 51–59 (1977)
Townsend, R.L., Weldon, E.J., Jr.: Self-orthogonal quasi-cyclic codes. IEEE Trans. Inf. Theory 13(2), 183–195 (1967)
Zhang, Y., Liu, Y., Hou, X., et al.: New MDS operator quantum error-correcting codes derived from constacyclic codes over \( {\mathbb{F}}_{q^{2}}+v{\mathbb{F}}_{q^{2}},\) Quantum Inf Process 22, 247 (2023) https://doi.org/10.1007/s11128-023-04013-1
Zhu, S., Guo, H., Kai, X., et al.: New quantum codes derived from images of cyclic codes. Quantum Inf. Process. 21, 254 (2022). https://doi.org/10.1007/s11128-022-03603-9
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hassan, Oa., Mustapha, N. & Nuh, A. On the algebraic structure of quasi-polycyclic codes and new quantum codes. Quantum Inf Process 23, 95 (2024). https://doi.org/10.1007/s11128-024-04304-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04304-1