Skip to main content

Advertisement

Log in

On the algebraic structure of quasi-polycyclic codes and new quantum codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we are interested in right (resp., left) quasi-polycyclic (QP) codes of length \(n=m\ell \) with an associated vector \(a=(a_0,a_1,\ldots , a_{m-1})\in {\mathbb {F}}_{q}^{^m}\), which are a generalization of quasi-cyclic codes (QC) and quasi-twisted (QT) codes. They are defined as invariant subspaces of \({\mathbb {F}}_{_q}^{^{n}} \) by the right (resp., left) QP operator \(\widetilde{T}_{\overrightarrow{a}}\) (resp., \(\widetilde{T}_{\overleftarrow{a}}\)). A correspondence between the right (resp., left) \(\ell \)-QP codes and the linear codes of length \( \ell \) over the ring \(R_{{\overrightarrow{a},m}}:={\mathbb {F}}_{q}[x] / \left\langle x^m-\overrightarrow{a}(x)\right\rangle ,\ \overrightarrow{a}(x)=\sum _{i=0}^{m-1}a_ix^i\) (resp., \( R_{{\overleftarrow{a},m}}:={\mathbb {F}}_{q}[x] /\left\langle x^m-\overleftarrow{a}(x)\right\rangle \), \(\overleftarrow{a}(x)=\sum _{i=0}^{n-1}a_ix^{m-1-i}\)) is given. This correspondence leads to some basic characterizations of these codes such as generator and parity check polynomials. Moreover, we also discuss the structure of the 1-generator QP codes, and we prove BCH-like and the Hartmann–Tzeng-like bounds on the minimum distance of QP codes. Finally, we give examples of new quantum codes derived from QP codes as an application of some of the results. Several of these codes are MDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ackerman, R., Aydin, N.: New quinary linear codes from quasi-twisted codes and their duals. Appl. Math. Lett. 24(4), 512–515 (2011)

    Article  MathSciNet  Google Scholar 

  2. Akre, D., Aydin, N., Harrington, M. J., Pandey, S. R.: New binary and ternary quasi-cyclic codes with good properties, (2021) arxiv preprint arXiv:2108.06752

  3. Alahmadi, A., Dougherty, S., Leroy, A., Solé, P.: On the duality and the direction of polycyclic codes. Adv. Math. Commun. 10(4), 921–929 (2016)

    Article  MathSciNet  Google Scholar 

  4. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)

    Article  MathSciNet  Google Scholar 

  5. Aydin, N., Liu, P., Yoshino, B.: A database of quantum codes, (2021) http://quantumcodes.info/. Accessed on 2023–07–10

  6. Aydin, N., Liu, P., Yoshino, B.: Polycyclic codes associated with trinomials: good codes and open questions (2022). https://doi.org/10.1007/s10623-022-01038-y

  7. Aydin, N., Siap, I.: New quasi-cyclic codes over \({{\mathbb{F} }}_5\). Appl. Math. Lett. 15(7), 833–836 (2002)

    Article  MathSciNet  Google Scholar 

  8. Aydin, N., Siap, I., Ray-Chaudhuri, D.K.: The structure of 1-generator quasi-twisted codes and new linear codes. Des. Codes Crypt. 24, 313–326 (2001)

    Article  MathSciNet  Google Scholar 

  9. Barbier, M., Chabot, C., Quintin, G.: On quasi-cyclic codes as a generalization of cyclic codes. Finite Fields Their Appl. 18, 904–919 (2012)

    Article  MathSciNet  Google Scholar 

  10. Bierbrauer, J., Edel, Y.: Some good quantum twisted codes, (2020) https://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html. Accessed on 2023–07–10

  11. Boudine, B., Laaouine, J.: Polycyclic codes over \({\mathbb{F} }_{p^{m}} [u]/\langle u^{2}\rangle \): classification, Hamming distance, and annihilators. Finite Fields Their Appl. 88, 102188 (2023)

    Article  Google Scholar 

  12. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. 54, 1098 (1996)

    Article  ADS  Google Scholar 

  13. Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  14. Cao, M., Cui, J.: Construction of new quantum codes via Hermitian dual-containing matrix-product codes. Quantum Inf. Process. 19, 427 (2020). https://doi.org/10.1007/s11128-020-02921-0

    Article  ADS  MathSciNet  Google Scholar 

  15. Daskalov, R.M., Aaron Gulliver, T.: New good quasi-cyclic ternary and quaternary linear codes. IEEE Trans. Inf. Theory 43(5), 1647–1650 (1997)

    Article  MathSciNet  Google Scholar 

  16. Daskalov, R., Hristov, P.: New quasi-twisted degenerate ternary linear codes. IEEE Trans. Inf. Theory 49(9), 2259–2263 (2008)

    Article  MathSciNet  Google Scholar 

  17. Daskalov, R., Hristov, P.: Some new quasi-twisted ternary linear codes. J. Algebra Comb. Discrete Struct. Appl. 2(3), 211–216 (2015)

    MathSciNet  Google Scholar 

  18. Grassl, M.: Code tables: bounds on the parameters of of codes, http://www.codetables.de/. Accessed on 2023–07–10

  19. Grassl, M.: New quantum codes from CSS codes. Quantum Inf. Process. 22, 86 (2023). https://doi.org/10.1007/s11128-023-03835-3

    Article  ADS  MathSciNet  Google Scholar 

  20. Huffuman, W.C., Pless, V.: Fundermentals of Error Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  21. Kasami, T.: A Gilbert-Varshamov bound for quasi-cycle codes of rate 1/2 (Corresp.). IEEE Trans. Inf. Theory 20(5), 679–679 (1974)

    Article  MathSciNet  Google Scholar 

  22. Lally, K., Fitzpatrick, P.: Algebraic structure of quasi-cyclic codes. Discr. Appl. Math. 111, 157–175 (2001)

    Article  Google Scholar 

  23. Lidl, R.L., Niederreiter, H.: Introduction to Finite Fields and their Applications, rev Cambridge University Press, Cambridge (1987)

    Google Scholar 

  24. Lin, L., Zhang, Y., Hou, X., et al.: New MDS EAQECCs from constacyclic codes over finite non-chain rings. Quantum Inf. Process. 22, 250 (2023). https://doi.org/10.1007/s11128-023-04007-z

    Article  ADS  MathSciNet  Google Scholar 

  25. Liu, X., Hu, P.: New quantum codes from two linear codes. Quantum Inf. Process. 19, 78 (2020). https://doi.org/10.1007/s11128-020-2575-0

    Article  ADS  MathSciNet  Google Scholar 

  26. Liu, X., Liu, H.: Quantum codes from linear codes over finite chain rings. Quantum Inf. Process. 16, 240 (2017). https://doi.org/10.1007/s11128-017-1695-7

    Article  ADS  MathSciNet  Google Scholar 

  27. Lopez-Permouth, S.R., Parra-Avila, B.R., Szabo, S.: Dual generalizations of the concept of cyclicity of codes. Adv. Math. Commun. 3(3), 227–234 (2009)

    Article  MathSciNet  Google Scholar 

  28. Ou-azzou, H., Najmeddine, M.: On the Algebraic structure of Polycyclic Codes. Filomat 35(10), 3407–3421 (2021)

    Article  MathSciNet  Google Scholar 

  29. Peterson, W.W., Weldon, E.J.: Error Correcting Codes. MIT Press, Cambridge (1972)

    Google Scholar 

  30. Prakash, O., Verma, R.K., Singh, A.: Quantum and LCD codes from skew constacyclic codes over a finite non-chain ring. Quantum Inf. Process. 22, 200 (2023). https://doi.org/10.1007/s11128-023-03951-0

    Article  ADS  MathSciNet  Google Scholar 

  31. Prange, E.: Cyclic Error-correcting Codes in Two Symbols, Air Force Cambridge Research Center (1957)

  32. Roos, C.: A generalization of the BCH bound for cyclic codes including the Hartmann–Tzeng bound. J. Comb. Theory Ser. A 33, 229–232 (1982)

    Article  MathSciNet  Google Scholar 

  33. Séguin, G.: A class of 1-generator quasi-cyclic codes. IEEE Trans. Inform. Theory 50, 1745–1753 (2004)

    Article  MathSciNet  Google Scholar 

  34. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 79 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  35. Tang, Y., Zhu, S., Kai, X., et al.: New quantum codes from dual-containing cyclic codes over finite rings. Quantum Inf. Process. 15, 4489–4500 (2016). https://doi.org/10.1007/s11128-016-1426-5

    Article  ADS  MathSciNet  Google Scholar 

  36. Thomas, K.: Polynomial approach to quasi-cyclic codes. Bul. Cal. Math. Soc. 69, 51–59 (1977)

    MathSciNet  Google Scholar 

  37. Townsend, R.L., Weldon, E.J., Jr.: Self-orthogonal quasi-cyclic codes. IEEE Trans. Inf. Theory 13(2), 183–195 (1967)

    Article  Google Scholar 

  38. Zhang, Y., Liu, Y., Hou, X., et al.: New MDS operator quantum error-correcting codes derived from constacyclic codes over \( {\mathbb{F}}_{q^{2}}+v{\mathbb{F}}_{q^{2}},\) Quantum Inf Process 22, 247 (2023) https://doi.org/10.1007/s11128-023-04013-1

  39. Zhu, S., Guo, H., Kai, X., et al.: New quantum codes derived from images of cyclic codes. Quantum Inf. Process. 21, 254 (2022). https://doi.org/10.1007/s11128-022-03603-9

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ou-azzou Hassan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, Oa., Mustapha, N. & Nuh, A. On the algebraic structure of quasi-polycyclic codes and new quantum codes. Quantum Inf Process 23, 95 (2024). https://doi.org/10.1007/s11128-024-04304-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04304-1

Keywords