Abstract
In this paper, the properties of many-body localization (MBL) in one-dimensional disordered Heisenberg XXX spin-1 chains are studied theoretically by using the methods of exact matrix diagonalization. We compare it with the MBL properties of the Heisenberg spin-1/2 chains. We first study properties of the eigenstates of the model through the excited-state fidelity. By analyzing the inflection point of excited-state fidelity curves, we can roughly determine the critical point of MBL phase transition. Moreover, for the case of random disorder, we calculated the bipartite entanglement entropy, and the critical points obtained from the intersection of curves for different systems sizes were basically consistent with those obtained from excited-state fidelity. Then we study the dynamical properties of the model by the dynamical behavior of diagonal entropy (DE), local magnetization and the time evolution of fidelity to further prove the occurrence of MBL phase transition in the disordered Heisenberg XXX spin-1 chain and distinguish the ergodic phase (thermal phase) and the many-body localized phase. We can illustrate that in the localized phase, the information of the initial state can be well protected if the disorder strength of the system is large enough. There are various forms of disorder, and we compare the effects of different forms of quasi-disorder and random disorder on MBL in this article. We also investigate the effect of non-uniform disorder external field on MBL. Our results reveal that disorder can cause the occurrence of MBL in the one-dimensional disordered Heisenberg XXX spin-1 chains. Furthermore, the form of disorder, the properties of the spin, and the size of the system all affect the critical point of the MBL phase transition.














Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability statement
We guarantee that all data and materials support our published claims and comply with field standards.
References
Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. Lett. 109, 1492 (1958)
Billy, J., et al.: Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 453, 891–894 (2008)
Basko, D.M., Aleiner, I.L., Altshuler, B.L.: Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006)
Safavi-Naini, A., Wall, M.L., Acevedo, O.L., Rey, A.M., Nandkishore, R.M.: Quantum dynamics of disordered spin chains with power-law interactions. Phys. Rev. A 99, 033610 (2019)
Macieszczak, K., Levi, E., Macri, T., Lesanovsky, I., Garrahan, J.P.: Coherence, entanglement, and quantumness in closed and open systems with conserved charge, with an application to many-body localization. Phys. Rev. A 99, 052354 (2019)
Strek, W., Cichy, B., Radosinski, L., Gluchowski, P., Marciniak, L., Lukaszewicz, M., Hreniak, D.: Laser-induced white-light emission from graphene ceramics-opening a band gap in graphene. Light Sci. Appl 4, e237 (2015)
Ponte, P., Papić, Z., Huveneers, F., Abanin, D.A.: Many-body localization in periodically driven systems. Phys. Rev. Lett. 114, 140401 (2015)
Dutt, A., Minkov, M., Williamson, I.A.D., Fan, S.: Higher-order topological insulators in synthetic dimensions. Light Sci. Appl. 9, 131 (2020)
Chanda, T., Sierant, P., Zakrzewski, J.: Time dynamics with matrix product states: Many-body localization. arXiv:1908.06524
Doggen, E.V.H., Schindler, F., Tikhonov, K.S., Mirlin, A.D., Neupert, T., Polyakov, D.G., Gornyi, I.V.: Many-body localization and delocalization in large quantum chains. Phys. Rev. B 98, 174202 (2018)
Doggen, E.V.H., Mirlin, A.D.: Many-body delocalization dynamics in long Aubry-André quasiperiodic chains. Phys. Rev. B 100, 104203 (2019)
Sierant, P., Zakrzewski, J.: Many-body localization of bosons in optical lattices. New J. Phys 20, 043032 (2018)
Kjáll, J.A., Bardarson, J.H., Pollmann, F.: Many-Body Localization in a Disordered Quantum Ising Chain. Phys. Rev. Lett. 113, 107204 (2014)
Luitz, D.J., Laflorencie, N., Alet, F.: Many-body localization edge in the random-field Heisenberg chain. Phys. Rev. B 91, 081103 (2015)
Elliott, B., Lim, S.P., Sheng, D.N.: Many-body localization and mobility edge in a disordered spin-12 Heisenberg ladder. Phys. Rev. B 2, 195153 (2015)
Bardarson, J.H., Pollmann, F., Moore, J.E.: Unbounded Growth of Entanglement in Models of Many-Body Localization. Phys. Rev. Lett. 109, 017202 (2012)
Serbyn, M., Papic, Z., Abanin, D.A.: Universal Slow Growth of Entanglement in Interacting Strongly Disordered Systems. Phys. Rev. Lett. 110, 260601 (2013)
Luitz, D.J., Laflorencie, N., Alet, F.: Extended slow dynamical regime close to the many-body localization transition. Phys. Rev. B 93, 060201(R) (2016)
Pino, M.: Entanglement growth in many-body localized systems with long-range interactions. Phys. Rev. B 90, 174204 (2014)
Deng, D.-L., Li, X., Pixley, J.H., Wu, Y.-L., Das Sarma, S.: Logarithmic entanglement lightcone in many-body localized systems. Phys. Rev. B 95, 024202 (2017)
Xu, K., Chen, J.-J., Zeng, Y., Zhang, Y.-R., Song, C., Liu, W., Guo, Q., Zhang, P., Xu, D., Deng, H., Huang, K., Wang, H., Zhu, X., Zheng, D., Fan, H.: Emulating Many-Body Localization with a Superconducting Quantum Processor. Phys. Rev. Lett. 120, 050507 (2018)
Torres-Herrera, E.J., Santos, L.F.: Extended nonergodic states in disordered many-body quantum systems. Ann. Phys. (Berlin) 529, 1600284 (2017)
Bauer, B., Nayak, C.: Area laws in a many-body localized state and its implications for topological order, J. Stat. Mech. 2013 (2013)
Huse, D.A., Nandkishore, R., Oganesyan, V., Pal, A., Sondhi, S.L.: Localization-protected quantum order. Phys. Rev. B 88, 014206 (2013)
Rubin, S., Hong, B., Fainman, Y.: Subnanometer imaging and controlled dynamical patterning of thermocapillary driven deformation of thin liquid films. Light Sci. Appl 8, 77 (2019)
Wang, Hanteng, Yeh, Hsiu-Chung., Kamenev, Alex: Many-body localization enables iterative quantum optimization. Nature Communications 13, 5503 (2022)
Qu, Y., Li, Q., Lu, C., Pan, M., Ghosh, P., Du, K., Qiu, M.: Thermal camouflage based on the phase- changing material GST. Light Sci. Appl. 7, 26 (2018)
Pal, A., Huse, D.A.: Many-body localization phase transition. Phys. Rev. B 82, 174411 (2010)
Potter, A.C., Vasseur, R., Parameswaran, S.A.: Universal properties of many-body delocalization transitions. Phys. Rev. X 5, 031033 (2015)
Petsch, S., Schuhladen, S., Dreesen, L., Zappe, H.: The engineered eyeball, a tunable imaging system using soft-matter micro-optics. Light Sci. Appl. 5, e16068 (2016)
Zhang, S.X., Yao, H.: Universal properties of many-body localization transitions in quasiperiodic systems. Phys. Rev. Lett. 121, 206601 (2018)
Biasco, S., Beere, H.E., Ritchie, D.A., Li, L., GilesDavies, A., Linfield, E.H., Vitiello, M.S.: Frequency- tunable continuous-wave random lasers at terahertz frequencies. Light Sci. Appl. 8, 43 (2019)
Canovi, E., Rossini, D., Fazio, R., Santoro, G.E., Silva, A.: Quantum quenches, thermalization, and many-body localization. Phys. Rev. B 83, 094431 (2011)
Serbyn, M., Papić, Z., Abanin, D.A.: Criterion for many-body localization-delocalization phase transition. Phys. Rev. X 5, 041047 (2015)
Bairey, E., Refael, G., Lindner, N.H.: Driving induced many-body localization. Phys. Rev. B 96, 020201(R) (2017)
Ponte, P., Chandran, A., Papic, Z., Abanin, D.A.: Periodically driven ergodic and many-body localized quantum systems. Ann. Phys. 353, 196–204 (2015)
Etezadi, D., Warner, J.B.I.V., Ruggeri, F.S., Dietler, G., Lashuel, H.A., Altug, H.: Nanoplasmonic mid- infrared biosensor for in vitro protein secondary structure detection. Light Sci. Appl. 6, e17029 (2017)
Kubo, Kenn: Spin correlations in the S= 1 XXZ chain. Phys. Rev. B 42, 2 (1992)
Capponi, S., Dupont, M., Sandvik, A.W., Sengupta, P.: NMR relaxation in the spin-1 Heisenberg chain. Phys. Rev. B 100, 094411 (2019)
Malvezzi, A.L., et al.: Quantum correlations and coherence in spin-1 Heisenberg chains. Phys. Rev. B 93, 184428 (2016)
Romero-Isart, O., Eckert, K., Sanpera, A.: Quantum state transfer in spin-1 chains. Phys. Rev. A 75, 050303(R) (2007)
Suzuki, T., Suga, S.: Quantized excitation spectra by magnon confinement in quasi-one-dimensional S = 1 spin system. Phys. Rev. B 98, 180406(R) (2018)
Aneck, I., Kennedy, T., Lich, E.H., Tasaki, H.: Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 57, 7 (1987)
Sen, D., Surendran, N.: Spin-1 chain with spin-1/2 excitations in the bulk. Phys. Rev. B 75, 104411 (2007)
Zhang, Y., et al.: Localization, multifractality, and many-body localization in periodically kicked quasiperiodic lattices. Phys. Rev. B 106, 054312 (2022)
Lee, M., Look, T.R., Lim, S.P., Sheng, D.N.: Many-body localization in spin chain systems with quasiperiodic fields. Phys. Rev. B 96, 075146 (2017)
Khemani, V., Sheng, D.N., Huse, D.A.: Two universality classes for the many-body localization transition. Phys. Rev. Lett. 119, 075702 (2017)
Setiawan, F., Deng, D.-L., Pixley, J.H.: Transport properties across the many-body localization transition in quasiperiodic and random systems. Phys. Rev. B 96, 104205 (2017)
Ghosh, S., Gidugu, J., Mukerjee, S.: Transport in the nonergodic extended phase of interacting quasiperiodic systems. Phys. Rev. B 102, 224203 (2020)
Iyer, S., Oganesyan, V., Refael, G., Huse, D.A.: Many-body localization in a quasiperiodic system. Phys. Rev. B 87, 134202 (2013)
Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)
Roati, G., et al.: Anderson localization of a non-interacting Bose-Einstein condensate. Nature 453, 895–898 (2008)
Bordia, Pranjal, et al.: Coupling Identical one-dimensional many-body localized systems. Phys. Rev. Lett. 116, 140401 (2016)
Aramthottil, A.S., Chanda, T., Sierant, P., Zakrzewski, J.: Finite-size scaling analysis of the many-body localization transition in quasiperiodic spin chains. Phys. Rev. B 104, 214201 (2021)
Gu, S.-J.: Fidelity approach to quantum phase transitions. Int. J. Modern Phys. B 24, 4371–4458 (2010)
Zanardi, Paolo, Giorda, Paolo, Cozzini, Marco: Information-theoretic differential geometry of quantum phase transitions. Phys. Rev. Lett. 99, 100603 (2007)
Albuquerque, A.F., Alet, F., Sire, C., Capponi, S.: Quantum critical scaling of fidelity susceptibility. Phys. Rev. B 81, 064418 (2010)
Sun, G.Y., Wei, B.B., Kou, S.P.: Fidelity as a probe for a deconfined quantum critical point. Phys. Rev. B 100, 064427 (2019)
Hu, T.T., Xue, K., Li, X.D., Zhang, Y., Ren, H.: Fidelity of the diagonal ensemble signals the many-body localization transition. Phys. Rev. E 94, 052119 (2016)
Hu, T.T., Xue, K., Li, X., Zhang, Y., Ren, H.: Excited-state fidelity as a signal for the many-body localization transition in a disordered Ising chain. Sci. Rep. 7, 1–8 (2017)
Acknowledgements
This work was supported by the Plan for Scientific and Technological Development of Jilin Province (No. 20230101018JC).
Author information
Authors and Affiliations
Contributions
Taotao Hu contributed the idea. Yiwen Gao, Yining Zhang, Jiameng Hong performed the calculations and prepared the figures. Yiwen Gao, Taotao Hu wrote the main manuscript. Xiaodan Li, Yuting Li and Dongyan Guo checked the calculations, and Taotao Hu improved the manuscript. All authors contributed to discussions and reviewed the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no Conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hu, T., Gao, Y., Zhang, Y. et al. Many-body localization transition of disordered Heisenberg XXX spin-1 chains. Quantum Inf Process 23, 142 (2024). https://doi.org/10.1007/s11128-024-04332-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04332-x