Skip to main content
Log in

Bidirectional quantum operation teleportation with two four-qubit cluster states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Utilizing two four-qubit cluster states as quantum channel, we propose a bidirectional quantum operation teleportation scheme. In the scheme, by employing only some usual quantum operations, i.e., Pauli operations, two-qubit controlled gate operations and Bell-state measurements, two distant users (partners) can remotely perform their own concerned quantum operation on the partner’s target quantum state, respectively. The impact of two types of fundamental noises (amplitude-damping noise and phase-damping noise) on our scheme is discussed via calculating and analysing its fidelity. Additionally, the scheme can be widely applied in remote control for its outstanding features of determinacy, high efficiency, interactivity, experimental feasibility and easy operability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

The data sets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Li, B., Xie, B., Zhang, Z.Z., et al.: Monogamy and polygamy for the generalized W-class states using unified-(\(q\), \(s\)) entropy. Sci. China-Phys. Mech. Astron. 67, 210312 (2024)

    ADS  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without bell theorem. Phys. Rev. Lett. 68, 557 (1992)

    ADS  MathSciNet  Google Scholar 

  4. Yuan, H., Song, J., Han, L.F., et al.: Improving the total efficiency of quantum key distribution by comparing Bell states. Opt. Commun. 281, 4803 (2008)

    ADS  Google Scholar 

  5. Zhou, N.R., Zhu, K.N., Zou, X.F.: Multi-party semi-quantum key distribution protocol with four-particle cluster states. Ann. Phys. 531, 1800520 (2019)

    MathSciNet  Google Scholar 

  6. Li, J., Ye, C.Q., Li, J.: High-capacity quantum key distribution based on hyperentangled Bell states and hyper-encoding. Int. J. Quantum Inf. 20, 2250027 (2022)

    MathSciNet  Google Scholar 

  7. Long, G.L., Liu, X.S.: Theoretically efficient high-apacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002). arXiv: quant-ph/0012056 (2000)

  8. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    ADS  Google Scholar 

  9. Yuan, H., Song, J., Liu, X.Y., et al.: Deterministic secure four-qubit GHZ states three-step protocol for quantum communication. Int. J. Theor. Phys. 58, 3658 (2019)

    MathSciNet  Google Scholar 

  10. Sheng, Y.B., Zhou, L., Long, G.L.: One-step quantum secure direct communication. Sci. Bull. 67, 367 (2022)

    Google Scholar 

  11. Hong, Y.P., Zhou, L., Zhong, W., et al.: Measurement-device-independent three-party quantumsecure direct communication. Quantum Inf. Process. 22, 111 (2023)

    ADS  Google Scholar 

  12. Du\(\check{s}\)ek, M., Hade\(\check{r}\)ka, O., Hendrych, M., My\(\check{s}\)ka, R.: Quantum identification system. Phys. Rev. A 60, 149 (1999)

  13. Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication in quantum key distribution. Phys. Rev. A 62, 022305 (2000)

    ADS  Google Scholar 

  14. Yuan, H., Liu, Y.M., Pan, G.Z., et al.: Quantum identity authentication based on ping-pong technique without entanglements. Quantum Inf. Process. 13, 2535 (2014)

  15. Ma, H.X., Huang, P., Bao, W.S.: Continuous-variable quantum identity authentication based on quantum teleportation. Quantum Inf. Process. 15, 2605 (2016)

    ADS  MathSciNet  Google Scholar 

  16. Zhu, H.F., Wang, L.W., Zhang, Y.L.: An efficient quantum identity authentication key agreement protocol without entanglement. Quantum Inf. Process. 19, 381 (2020)

    ADS  MathSciNet  Google Scholar 

  17. Zhang, Z.J., Cheung, C.Y.: Shared quantum remote control: quantum operation sharing. J. Phys. B 44, 165508 (2011)

    ADS  Google Scholar 

  18. Ye, B.L., Liu, Y.M., Liu, X.S., Zhang, Z.J.: Remotely sharing a single-qubit operation with a five-qubit genuine state. Chin. Phys. Lett. 30, 020301 (2013)

    ADS  Google Scholar 

  19. Yuan, H., Zhang, W.B., Yin, X.F.: Simplistic quantum operation sharing with a five-qubit genuinely entangled state. Quantum Inf. Process. 19, 122 (2020)

    ADS  MathSciNet  Google Scholar 

  20. Zhang, Z.J., Yuan, H.: Deterministic tripartite sharing of an arbitrary single-qubit operation with the five-qubit cluster state in a given entanglement structure. Quantum Inf. Process. 20, 3 (2021)

    ADS  MathSciNet  Google Scholar 

  21. Zhang, Z.J., Zhang, L., Zhuge, B., et al.: Four-party deterministic quantum operation sharing with a generalized seven-qubit Brown state. Laser Phys. Lett. 18, 055202 (2021)

    ADS  Google Scholar 

  22. Bennett, C.H., Brassard, G., Cr\(\acute{e}\)peau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

  23. Bouwmeester, D., Pan, J.W., Mattle, K., et al.: Experimmental quantum telepotation. Nature 390, 575 (1997)

    ADS  Google Scholar 

  24. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    ADS  MathSciNet  Google Scholar 

  25. Shi, B.S., Jiang, Y.K., Guo, G.C.: Probabilistic teleportation of two-particle entangledstate. Phys. Lett. A 268, 161 (2000)

    ADS  MathSciNet  Google Scholar 

  26. Yan, F.L., Wang, D.: Probabilistic and controlled teleportation of unknown quantum states. Phys. Lett. A 316, 297 (2003)

    ADS  MathSciNet  Google Scholar 

  27. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum state sharing and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)

    ADS  Google Scholar 

  28. Li, X.H., Deng, F.G.: Controlled teleportation. Front. Comput. Sci. China 2, 147 (2008)

    Google Scholar 

  29. Olmschenk, S., Matsukevich, D.N., Maunz, P., et al.: Quantum teleportation between distant matter qubits. Science 323, 486 (2009)

    ADS  Google Scholar 

  30. Mishra, M.K., Prakash, H.: Teleportation of a two-mode entangled coherent state encoded with two-qubit information. J. Phys. B 43, 185501 (2010)

    ADS  Google Scholar 

  31. Prakash, H., Mishra, M.K.: Teleportation of superposed coherent states using nonmaximally entangled resources. J. Opt. Soc. Am. B 29, 2915 (2012)

    ADS  Google Scholar 

  32. Wang, X.L., Cai, X.D., et al., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature. 518, 516 (2015)

  33. Mishra, M.K., Prakash, H.: Long distance atomic teleportation with as good success as desired. Ann. Phys. 360, 462 (2015)

    Google Scholar 

  34. Dong, L., Wang, J.X., Li, Q.Y., et al.: Teleportation of a general two-photon state employing a polarization-entangled \(\chi \) state with nondemolition parity analyses. Quantum Inf. Process. 15, 2955 (2016)

    ADS  MathSciNet  Google Scholar 

  35. Ren, J.G., Xu, P, et al., Pan, J.W.: Ground-to-satellite quantum teleportation. Nature 549, 70 (2017)

  36. Nie, Y.Y., Sang, M.H., Li, S.S.: Tripartite controlled teleportation via a seven-qubit entangled state. Int. J. Theor. Phys. 56, 2792 (2017)

    MathSciNet  Google Scholar 

  37. Hu, X.M., Zhang, C., et al., Guo, G.C.: Experimental certification for nonclassical teleportation. Quantum Eng. 1, e13 (2019)

  38. Rajiuddin, S., Baishya, A., et al., Panigrahi, P.K.: Experimental realization of quantum teleportation of an arbitrary two-qubit state using a four-qubit cluster state. Quantum Inf. Process. 19, 87 (2020)

  39. Chen, J.L., Li, D.F., Liu, M.Z., et al.: Quantum controlled teleportation of Bell state using seven-qubit entangled state. Int. J. Theor. Phys. 59, 1402 (2020)

    MathSciNet  Google Scholar 

  40. Wang, M.R., Ren, P., Xiang, Z.: Synchronous multicast-based quantum teleportation scheme via a six-qubit entangled state. Mod. Phys. Lett. B 36, 2250164 (2022)

    ADS  MathSciNet  Google Scholar 

  41. Ma, Y.: Convenient quantum controlled teleportation of two-qubit pure state with seven-qubit entangled state. Laser Phys. Lett. 20, 095204 (2023)

    ADS  Google Scholar 

  42. Mishra, M.K., Maurya, A.K., Prakash, H.: Two-way quantum communication: secure quantum information exchange. J. Phys. B: At. Mol. Opt. Phys. 44, 115504 (2011)

    ADS  Google Scholar 

  43. Zha, X.W., Zou, Z.C., Qi, J.X., et al.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740 (2013)

    MathSciNet  Google Scholar 

  44. Fu, H.Z., Tian, X.L., Hu, Y.: A general method of selecting quantum channel for bidirectional quantum teleportation. Int. J. Theor. Phys. 53, 1840 (2014)

    Google Scholar 

  45. Duan, Y.J., Zha, X.W.: Bidirectional quantum controlled teleportation via a six-qubit entangled state. Int. J. Theor. Phys. 53, 3780 (2014)

    Google Scholar 

  46. Thapliyal, K., Verma, A., Pathak, A.: A general method for selecting quantum channel for bidirectional controlled state teleportation and other schemes of controlled quantum communication. Quantum Inf. Process. 14, 4601 (2015)

    ADS  MathSciNet  Google Scholar 

  47. Kiktenko, E.O., Popov, A.A., Fedorov, A.K.: Bidirectional imperfect quantum teleportation with a single Bell state. Phys. Rev. A 93, 062305 (2016)

    ADS  Google Scholar 

  48. Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15, 905 (2016)

    ADS  MathSciNet  Google Scholar 

  49. Maurya, A.K., Mishra, M.K., Prakash, H.: Two-way quantum communication: generalization of secure quantum information exchange to quantum network. Pramana-J. Phys. 86, 515 (2016)

  50. Li, Y.H., Nie, L.P., Li, X.L., et al.: Asymmetric bidirectional controlled teleportation by using six-qubit cluster state. Int. J. Theor. Phys. 55, 3008 (2016)

    MathSciNet  Google Scholar 

  51. Choudhury, B.S., Samanta, S.: Asymmetric bidirectional 3\(\leftrightarrow \)2 qubit teleportation protocol between Alice and Bob via 9-qubit cluster state. Int. J. Theor. Phys. 56, 3285 (2017)

    MathSciNet  Google Scholar 

  52. Fang, S.H., Jiang, M.: Bidirectional and asymmetric controlled quantum information transmission via five-qubit brown state. Int. J. Theor. Phys. 56, 1530 (2017)

    MathSciNet  Google Scholar 

  53. Fang, S.H., Jiang, M.: A novel scheme for bidirectional and hybrid quantum information transmission via a seven-qubit state. Int. J. Theor. Phys. 57, 523 (2018)

    MathSciNet  Google Scholar 

  54. Yuan, H., Pan, G.Z.: Improving the bidirectional quantum teleportation scheme via five-qubit cluster state. Int. J. Theor. Phys. 59, 3387 (2020)

    MathSciNet  Google Scholar 

  55. Yuan, H., Zhang, Z.J.: Optimizing the scheme of bidirectional controlled quantum teleportation with a genuine five-qubit entangled state. Mod. Phys. Lett. A 35, 2050301 (2020)

    ADS  MathSciNet  Google Scholar 

  56. Vikram, V.: Bidirectional controlled quantum teleportation of multi-qubit entangled states via five-qubit entangled state. Phys. Scr. 96, 035105 (2021)

    ADS  Google Scholar 

  57. Dai, R., Li, H.S.: Asymmetric bidirectional quantum teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 61, 187 (2022)

    MathSciNet  Google Scholar 

  58. Yuan, H., Zhang, G., Xie, C.M., et al.: Improving the scheme of bidirectional controlled teleportation with a five-qubit composite GHZ-Bell state. Laser Phys. Lett. 19, 085202 (2022)

    ADS  Google Scholar 

  59. Huelga, S.F., Vaccaro, J.A., Chefles, A.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)

    ADS  Google Scholar 

  60. Zou, X.B., Pahlke, K., Mathis, W.: Teleportation implementation of non-deterministic quantum logic operations by using linear optical elements. Phys. Rev. A 65, 064305 (2002)

    ADS  Google Scholar 

  61. Xiang, G.Y., Li, J., Guo, G.C.: Teleporting a rotation on remote photons. Phys. Rev. A 71, 044304 (2005)

    ADS  Google Scholar 

  62. Yao, C.M.: Quantum remote control of unitary operations on a qubit of pure entangled states. Chin. Phys. Lett. 23, 545 (2006)

    ADS  Google Scholar 

  63. Wang, A.M.: Remote implementations of partially unknown quantum operations of multiqubits. Phys. Rev. A 74, 032317 (2006)

    ADS  MathSciNet  Google Scholar 

  64. Zhao, N.B., Wang, A.M.: Local implementation of nonlocal operations with block forms. Phys. Rev. A 78, 014305 (2008)

    ADS  MathSciNet  Google Scholar 

  65. Hu, S., Cui, W.X., Wang, D.Y., et al.: Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities. Sci. Rep. 5, 11321 (2015)

    ADS  Google Scholar 

  66. Vyas, N., Saha, D., Panigrahi, P.K.: Rooted-tree network for optimal non-local gate implementation. Quantntum Inf. Process. 15, 3855 (2016)

    ADS  MathSciNet  Google Scholar 

  67. Vishnu, P.K., Joy, D., et al., Panigrahi, P.K.: Experimental demonstration of non-local controlled-unitary quantum gates using a five-qubit quantum computer. Quantum Inf. Process. 17, 274 (2018)

  68. Zhou, S.Q., Bai, M.Q., Liao, T., et al.: Bidirectional quantum operation teleportation with different states. Int. J. Quantum Inf. 16, 1850042 (2018)

    MathSciNet  Google Scholar 

  69. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001)

    ADS  Google Scholar 

  70. Hein, M., D\(\ddot{u}\)r, W., Briegel, H.J.: Entanglement properties of multipartite entangled states under the influence of decoherence. Phys. Rev. A 71, 032350 (2005)

  71. Liang, X.T.: Classical information capacities of some single qubit quantum noisy channels. Commun. Theor. Phys. 39, 537 (2003)

    ADS  MathSciNet  Google Scholar 

  72. Sun, Y.R., Xu, G., Chen, X.B., et al.: Asymmetric controlled bidirectional remote preparation of single- and three- qubit equatorial state in noisy environment. IEEE Access 7, 2811 (2019)

    Google Scholar 

  73. Kim, M.S., Agarwal, G.S.: Reconstruction of an entangled state in cavity QED. Phys. Rev. A 59, 3044 (1999)

    ADS  Google Scholar 

  74. Zheng, S.B.: Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement. Phys. Rev. A 69, 064302 (2004)

    ADS  Google Scholar 

  75. Bouwmeester, D., Pan, J.W., Mattle, K., et al.: Experimental quantum teleportation. Nature 390, 575 (1997)

    ADS  Google Scholar 

  76. Boschi, D., Branca, S., Martini, F.D., et al.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    ADS  MathSciNet  Google Scholar 

  77. Solano, E., Cesar, C.L., de Matos Filho R.L., et al.: Reliable teleportation in trapped ions. Eur. Phys. J. D 13, 121 (2001)

  78. Deng, Z.J., Feng, M., Gao, K.L.: Teleportation with trapped ions in a magnetic field gradient. Phys. Lett. A 344, 97 (2005)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NNSFC) under Grant No.12075205, the Zhejiang Provincial Natural Science Foundation of China under Grant No.LZ24A050005, the Natural Science Research Key Project of Education Department of Anhui Province under Grant Nos. KJ2021A0943 and 2023AH052648, and the Research Start-up Funding Project for High-level Talents of West Anhui University under Grant No. WGKQ2021047, the Key Project of Natural Science Research of West Anhui University under Grants Nos. WXZR202207 and WXZR202311.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan-Jun Zhang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interests, and we do not have any possible conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Liu, XY. & Zhang, ZJ. Bidirectional quantum operation teleportation with two four-qubit cluster states. Quantum Inf Process 23, 127 (2024). https://doi.org/10.1007/s11128-024-04339-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04339-4

Keywords

Navigation