Skip to main content
Log in

Analysis and protection to user privacy in quantum private query with non-ideal light source

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Most existing quantum-key-distribution-based quantum private query (QPQ) protocols are designed based on ideal quantum communication devices. However, multiphoton pulses are unavoidable in various light sources due to practical devices. We analyze the security of the QPQ protocol with the user as the light source in the case of non-ideal light sources. The results show that the user’s privacy is seriously threatened when the database utilizes multiphoton pulses to launch attacks. To address this issue, we propose a decoy-state method to resist multiphoton attacks in the QPQ, which is used to verify the honesty of the database. By calculating the ratio of multiphoton pulses, shifting the key, and choosing the suitable light sources, the user can detect and effectively resist the database launching multiphoton attacks. This approach fills the research gap on the user-as-light-source aspect of QPQ protocols, enabling the QPQ to perform better in scenarios involving non-ideal light sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982). https://doi.org/10.1038/299802a0

    Article  ADS  Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum Cryptography: Public Key Distribution and Coin Tossing, pp. 175–179 (1984)

  3. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002). https://doi.org/10.1103/RevModPhys.74.145

    Article  ADS  Google Scholar 

  4. Long, G.-L., Liu, X.-S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002). https://doi.org/10.1103/PhysRevA.65.032302

    Article  ADS  Google Scholar 

  5. Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005). https://doi.org/10.1103/PhysRevLett.94.230504

    Article  ADS  Google Scholar 

  6. Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94(23), 230503 (2005). https://doi.org/10.1103/PhysRevLett.94.230503

    Article  ADS  Google Scholar 

  7. Ma, X., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 012326 (2005). https://doi.org/10.1103/PhysRevA.72.012326

    Article  ADS  Google Scholar 

  8. Jackson, D.J., Hockney, G.M.: Securing qkd links in the full hilbert space. Quantum Inf. Process. 4, 35–47 (2005). https://doi.org/10.1007/s11128-005-3194-5

    Article  MathSciNet  Google Scholar 

  9. Jackson, D.J., Hockney, G.M.: Securing qkd links in the full hilbert space. Quantum Inf. Process. 4, 35–47 (2005). https://doi.org/10.1007/s11128-005-3194-5

    Article  MathSciNet  Google Scholar 

  10. Jin, W., Zheng, L., Wang, F., Liang, R.: The influence of stochastic dispersion on quantum key distribution system. Sci. China Inf. Sci. 56, 1–6 (2013). https://doi.org/10.1007/s11432-012-4586-7

    Article  ADS  Google Scholar 

  11. Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509(7501), 475–478 (2014). https://doi.org/10.1038/nature13303

    Article  ADS  Google Scholar 

  12. Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nat. Photonics 16(2), 154–161 (2022). https://doi.org/10.1038/s41566-021-00928-2

    Article  ADS  Google Scholar 

  13. Huang, W., Wen, Q.-Y., Liu, B., Gao, F., Chen, H.: Deterministic secure quantum communication with collective detection using single photons. Int. J. Theor. Phys. 51, 2787–2797 (2012). https://doi.org/10.1007/s10773-012-1154-2

    Article  Google Scholar 

  14. Zhou, L., Sheng, Y.-B.: One-step device-independent quantum secure direct communication. Sci. China-Phys. Mech. Astron. 65(5), 250311 (2022). https://doi.org/10.1007/s11433-021-1863-9

    Article  ADS  MathSciNet  Google Scholar 

  15. Qin, L., Liu, B., Gao, F., Huang, W., Xu, B., Li, Y.: Decoy-state quantum private query protocol with two-way communication. Physica A-Stat. Mech. Appl. 633, 129427 (2024). https://doi.org/10.1016/j.physa.2023.129427

    Article  MathSciNet  Google Scholar 

  16. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999). https://doi.org/10.1126/science.283.5410.2050

    Article  ADS  Google Scholar 

  17. Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000). https://doi.org/10.1103/PhysRevLett.85.441

    Article  ADS  Google Scholar 

  18. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009). https://doi.org/10.1103/RevModPhys.81.1301

    Article  ADS  Google Scholar 

  19. Lu, H., Fung, C.-H.F., Cai, Q.-Y.: Two-way deterministic quantum key distribution against detector-side-channel attacks. Phys. Rev. A 88(4), 044302 (2013) https://doi.org/10.1103/PhysRevA.88.044302

  20. Liu, H., Jiang, C., Zhu, H.-T., Zou, M., Yu, Z.-W., Hu, X.-L., Xu, H., Ma, S., Han, Z., Chen, J.-P., et al.: Field test of twin-field quantum key distribution through sending-or-not-sending over 428 km. Phys. Rev. Lett. 126(25), 250502 (2021). https://doi.org/10.1103/PhysRevLett.126.250502

    Article  ADS  Google Scholar 

  21. Yin, J., Li, Y.-H., Liao, S.-K., Yang, M., Cao, Y., Zhang, L., Ren, J.-G., Cai, W.-Q., Liu, W.-Y., Li, S.-L., et al.: Entanglement-based secure quantum cryptography over 1120 kilometres. Nature 582(7813), 501–505 (2020). https://doi.org/10.1038/s41586-020-2401-y

    Article  ADS  Google Scholar 

  22. Liu, B., Xiao, D., Huang, W., Jia, H.-Y., Song, T.-T.: Quantum private comparison employing single-photon interference. Quantum Inf. Process. 16, 1–13 (2017). https://doi.org/10.1007/s11128-017-1630-y

    Article  MathSciNet  Google Scholar 

  23. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. J. Comput. Syst. Sci. 60(3), 592–629 (2000). https://doi.org/10.1006/jcss.1999.1689

    Article  MathSciNet  Google Scholar 

  24. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring, 124–134 (1994) https://doi.org/10.1109/SFCS.1994.365700. IEEE

  25. Zhou, X., Qiu, D., Luo, L.: Distributed exact Grover’s algorithm. Front. Phys. 18, 51305 (2023). https://doi.org/10.1007/s11467-023-1327-x

    Article  ADS  Google Scholar 

  26. Liu, B., Gao, F., Qin, S.-J., Huang, W., Liu, F., Wen, Q.-Y.: Choice of measurement as the secret. Phys. Rev. A 89(4), 042318 (2014). https://doi.org/10.1103/PhysRevA.89.042318

    Article  ADS  Google Scholar 

  27. Wang, J., Cui, K., Luo, C., Zhang, H., Zhou, L., Chen, T., Liang, H., Jin, G.: Design of a high-repetition rate photon source in a quantum key distribution system. Sci. China Inf. Sci. 56, 1–7 (2013). https://doi.org/10.1007/s11432-012-4671-y

    Article  ADS  Google Scholar 

  28. Yan, P.-S., Zhou, L., Zhong, W., Sheng, Y.-B.: Advances in quantum entanglement purification. Sci. China-Phys. Mech. Astron. 66(5), 250301 (2023). https://doi.org/10.1007/s11433-022-2065-x

    Article  ADS  Google Scholar 

  29. Sheng, Y.-B., Zhou, L.: A step toward fault-tolerant distributed quantum computing: entangling nonlocal logical-qubit with optical quantum multiplexing. Sci. China-Phys. Mech. Astron. 67(2), 220331 (2024). https://doi.org/10.1007/s11433-023-2258-x

    Article  Google Scholar 

  30. Liu, W., Peng, J., Wang, C., Cao, Z., Huang, D., Lin, D., Huang, P., Zeng, G.: Hybrid quantum private communication with continuous-variable and discrete-variable signals. Sci. China-Phys. Mech. Astron. 58, 1–7 (2015). https://doi.org/10.1007/s11433-014-5632-9

    Article  Google Scholar 

  31. Tang, Z., Liao, Z., Xu, F., Qi, B., Qian, L., Lo, H.-K.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112(19), 190503 (2014). https://doi.org/10.1103/PhysRevLett.112.190503

    Article  ADS  Google Scholar 

  32. Lo, H.-K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154 (1997). https://doi.org/10.1103/PhysRevA.56.1154

    Article  ADS  Google Scholar 

  33. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100(23), 230502 (2008). https://doi.org/10.1103/PhysRevLett.100.230502

    Article  ADS  MathSciNet  Google Scholar 

  34. Jakobi, M., Simon, C., Gisin, N., Bancal, J.-D., Branciard, C., Walenta, N., Zbinden, H.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83(2), 022301 (2011). https://doi.org/10.1103/PhysRevA.83.022301

    Article  ADS  Google Scholar 

  35. Gao, F., Liu, B., Wen, Q.-Y., Chen, H.: Flexible quantum private queries based on quantum key distribution. Opt. Express 20(16), 17411–17420 (2012). https://doi.org/10.1364/OE.20.017411

    Article  ADS  Google Scholar 

  36. Yang, Y.-G., Zhang, M.-O., Yang, R.: Private database queries using one quantum state. Quantum Inf. Process. 14, 1017–1024 (2015). https://doi.org/10.1007/s11128-014-0902-z

    Article  ADS  MathSciNet  Google Scholar 

  37. Wei, C.-Y., Wang, T.-Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93(4), 042318 (2016). https://doi.org/10.1103/PhysRevA.93.042318

    Article  ADS  Google Scholar 

  38. Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Phys. Rev. A 51(3), 1863 (1995). https://doi.org/10.1103/PhysRevA.51.1863

    Article  ADS  Google Scholar 

  39. Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003). https://doi.org/10.1103/PhysRevLett.91.057901

    Article  ADS  Google Scholar 

  40. Liu, B., Xia, S., Xiao, D., Huang, W., Xu, B., Li, Y.: Decoy-state method for quantum-key-distribution-based quantum private query. Sci. China-Phys. Mech. Astron. 65(4), 240312 (2022). https://doi.org/10.1007/s11433-021-1843-7

    Article  ADS  Google Scholar 

  41. Scarani, V., Acin, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92(5), 057901 (2004). https://doi.org/10.1103/PhysRevLett.92.057901

    Article  ADS  Google Scholar 

  42. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121 (1992). https://doi.org/10.1103/PhysRevLett.68.3121

    Article  ADS  MathSciNet  Google Scholar 

  43. Gao, F., Liu, B., Huang, W., Wen, Q.-Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21(3), 98–108 (2014). https://doi.org/10.1109/JSTQE.2014.2358192

    Article  ADS  Google Scholar 

  44. Dušek, M., Jahma, M., Lütkenhaus, N.: Unambiguous state discrimination in quantum cryptography with weak coherent states. Phys. Rev. A 62(2), 022306 (2000). https://doi.org/10.1103/PhysRevA.62.022306

    Article  ADS  Google Scholar 

  45. Wei, C.-Y., Cai, X.-Q., Wang, T.-Y., Qin, S.-J., Gao, F., Wen, Q.-Y.: Error tolerance bound in qkd-based quantum private query. IEEE J. Sel. Areas Commun. 38(3), 517–527 (2020). https://doi.org/10.1109/JSAC.2020.2968998

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R &D Program of China (Grant Nos. 2022YFC3801700), National Natural Science Foundation of China (Grant Nos. 62171418), and Sichuan Science and Technology Program (Grant No. 2023JDRC0017)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Huang or Bin Liu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, YF., Huang, W., Liu, B. et al. Analysis and protection to user privacy in quantum private query with non-ideal light source. Quantum Inf Process 23, 133 (2024). https://doi.org/10.1007/s11128-024-04346-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04346-5

Keywords

Navigation