Skip to main content
Log in

Ergodicity and limit distribution of open quantum walks on the periodic graphs

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We discuss the limit distribution of open quantum walks on the periodic graphs, particularly on the cycles. We show that under certain hypothesis, we can benefit from the theory of the classical Markov chains. Thereby we can show that under certain condition the stationary distribution is unique. For certain models, we show directly the stationary distribution. We also notice that the open quantum walks cannot be always modeled as classical Markov chains by showing that it can break some classical probability rule. By providing with some examples, we show that there can be multiple stationary states for the open quantum walks on the cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Attal, S., Guillotin-Plantard, N., Sabot, C.: Central limit theorems for open quantum random walks and quantum measurement records. Ann. Henri Poincaré 16(1), 15–43 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  2. Attal, S., Petruccione, F., Sabot, C., Sinayskiy, I.: Open quantum random walks. J. Stat. Phys. 147, 832–852 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  3. Attal, S., Petruccione, F., Sinayskiy, I.: Open quantum walks on graphs. Phys. Lett. A 376(18), 1545–1548 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  4. Carbone, R., Pautrat, Y.: Open quantum random walks: reducibility, period, ergodic properties. Ann. Henri Poincaré 17, 99–135 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  5. Dhahri, A., Mukhamedov, F.: Open quantum random walks, quantum Markov chains and recurrence. Rev. Math. Phys. 31(7), 1950020 (2019)

    Article  MathSciNet  Google Scholar 

  6. Fàbrega, J.: Random walks on graphs, Lecture Note (2011)

  7. Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes, 3rd edn. Oxford University Press, Oxford, New York (2001)

    Book  Google Scholar 

  8. Ko, C.K., Konno, N., Segawa, E., Yoo, H.J.: Central limit theorems for open quantum random walks on the crystal lattices. J. Stat. Phys. 176, 710–735 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ko, C.K., Yoo, H.J.: Entropy production of quantum Markov semigroup associated with open quantum walks on the periodic graphs. Quantum Inf. Process. 22, 81 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  10. Konno, N., Yoo, H.J.: Limit theorems for open quantum random walks. J. Stat. Phys. 150(2), 299–319 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. Kümmerer, B., Maassen, H.: An ergodic theorem for quantum counting processes. J. Phys. A Math. Gen. 36, 2155–2161 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  12. Kümmerer, B., Maassen, H.: A pathwise ergodic theorem for quantum trajectories. J. Phys. A Math. Gen. 37, 11889–11896 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  13. Lardizabal, C.F.: Open quantum random walks and the mean hitting time formula. Quantum Inf. Comput. 17(1/2), 79–105 (2017)

    MathSciNet  Google Scholar 

  14. Lardizabal, C.F., Souza, R.R.: Open quantum random walks: ergodicity, hitting times, gambler’s ruin and potential theory. J. Stat. Phys. 164(5), 1122–1156 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  16. Lovász, L.: Random walks on graphs: a survey. Bolyai Society Mathematical Studies, vol. 2. Keszthely (1993)

  17. Umanita, V.: Classification and decomposition of quantum Markov semigroups. Thesis, Politecnico di Milano (2005)

Download references

Acknowledgements

We are grateful to anonymous referees for their valuable comments, which greatly improved the paper. We thank Mrs. Yoo Jin Cha for drawing the figures. The work of H. J. Yoo was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIT) (No. 2020R1F1A101075).

Author information

Authors and Affiliations

Authors

Contributions

C.K.K and H.J.Y wrote the main manuscript and all authors reviewd the manuscript.

Corresponding author

Correspondence to Hyun Jae Yoo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Generating matrices under Hypothesis (H)

Appendix: Generating matrices under Hypothesis (H)

In this appendix, we give the explicit expression of the rank 1 matrices \(B^*P_iB\) and \(C^*P_iC\) for \(i=1,2\) under the Hypothesis (H).

Let us denote the unitary matrices \(U_B\) and \(U_C\) appeared in the singular value decomposition of B and C in (3.5) by

$$\begin{aligned} U_B=\left( \begin{matrix} u_{11}&{}u_{12}\\ u_{21}&{}u_{22}\end{matrix}\right) , \quad U_C=\left( \begin{matrix} v_{11}&{}v_{12}\\ v_{21}&{}v_{22}\end{matrix}\right) . \end{aligned}$$

Lemma A.1

Let B and C have the singular value decomposition as in (3.5) and satisfy the hypothesis (H). Then the rank 1 operators \(B^*P_iB\) and \(C^*P_iC\), \(i=1,2\), have the following forms:

(i) Case 1: \(0<\lambda <1\), \(0<\mu < 1\).

$$\begin{aligned} B^*P_1B=\lambda P_1,\,\,B^*P_2B=\mu P_2\text { or }B^*P_1B=\mu P_2,\,\,B^*P_2B=\lambda P_1, \end{aligned}$$

and similarly,

$$\begin{aligned}{} & {} C^*P_1C=(1-\lambda )P_1,\,\,C^*P_2C=(1-\mu )P_2\text { or}\\{} & {} C^*P_1C=(1-\mu )P_2,\,\,C^*P_2C=(1-\lambda )P_1. \end{aligned}$$

(ii) Case 2: \(0<\lambda <1\), \(\mu =0\).

$$\begin{aligned}{} & {} B^*P_1B=\lambda |u_{11}|^2P_1,\,\,B^*P_2B=\lambda |u_{21}|^2P_1,\text { and}\\{} & {} C^*P_1C= P_2,\,\,C^*P_2C=(1-\lambda ) P_1 \text { or } C^*P_1C= (1-\lambda )P_1,\,\,C^*P_2C= P_2. \end{aligned}$$

(iii) Case 3: \(0<\lambda <1\), \(\mu =1\).

$$\begin{aligned}{} & {} B^*P_1B= P_2,\,\,B^*P_2B=\lambda P_1\text { or } B^*P_1B= \lambda P_1,\,\,B^*P_2B= P_2,\text { and}\\{} & {} C^*P_1C= (1-\lambda )|v_{11}|^2P_1,\,\,C^*P_2C=(1-\lambda )|v_{21}|^2 P_1. \end{aligned}$$

(iv) Case 4: \(\lambda =0\), \(0<\mu <1\).

$$\begin{aligned}{} & {} B^*P_1B=\mu |u_{12}|^2P_2,\,\,B^*P_2B=\mu |u_{22}|^2P_2,\text { and}\\{} & {} C^*P_1C= (1-\mu )P_2,\,\,C^*P_2C= P_1 \text { or } C^*P_1C=P_1,\,\,C^*P_2C=(1-\mu ) P_2. \end{aligned}$$

(v) Case 5: \(\lambda =1\), \(0<\mu <1\).

$$\begin{aligned}{} & {} B^*P_1B= \mu P_2,\,\,B^*P_2B= P_1\text { or } B^*P_1B= P_1,\,\,B^*P_2B= \mu P_2,\text { and}\\{} & {} C^*P_1C= (1-\mu )|v_{12}|^2P_2,\,\,C^*P_2C=(1-\mu )|v_{22}|^2 P_2. \end{aligned}$$

(vi) Case 6: \(\lambda =0\), \(\mu =1\).

$$\begin{aligned} B^*P_1B=|u_{12}|^2 P_2,\,\,B^*P_2B=|u_{22}|^2 P_2\text { and } C^*P_1C= |v_{11}|^2P_1,\,\,C^*P_2C= |v_{21}|^2 P_1. \end{aligned}$$

(vii) Case 7: \(\lambda =1\), \(\mu =0\).

$$\begin{aligned} B^*P_1B=|u_{11}|^2 P_1,\,\,B^*P_2B=|u_{21}|^2 P_1\text { and } C^*P_1C= |v_{12}|^2P_2,\,\,C^*P_2C= |v_{22}|^2 P_2. \end{aligned}$$

(viii) Case 8: \(\lambda =0\), \(\mu =0\) or \(\lambda =1\), \(\mu =1\).

These cases result in \(B=0\) or \(C=0\), respectively, and are out of consideration in the model.

Proof

The proof follows easily by using the Hypothesis (H) and the fact that the operators \(B^*P_iB\) and \(C^*P_iC\) are of rank 1. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, C.K., Yoo, H.J. Ergodicity and limit distribution of open quantum walks on the periodic graphs. Quantum Inf Process 23, 159 (2024). https://doi.org/10.1007/s11128-024-04367-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04367-0

Keywords

Mathematics Subject Classification