Skip to main content

Advertisement

Log in

Efficient preparation of lossless quantum images based on Gray code

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The initialization of desired quantum states is usually the starting element of quantum algorithms. For quantum image processing, inefficient preparation of quantum images hinders the implement of algorithms on quantum devices. In this study, a ready-to-use quantum circuit simplification method for preparing quantum images is proposed. By encoding the control qubits of the multi-qubit gates as Gray code, an optimized circuit for preparing lossless quantum images is constructed using a technique for simultaneously initializing adjacent pixels. This technique decreases the necessary number of control qubits and the depth of preparation circuits. By validating the proposed algorithm on a medical image dataset, it is demonstrated that a satisfactory depth reduction can be achieved without any quality loss when preparing quantum images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Availability of data and materials

The authors declare that the data supporting the findings of this study are available within the paper.

References

  1. Kim, Y., Eddins, A., Anand, S., Wei, K., Berg, E., Rosenblatt, S., Nayfeh, H., Wu, Y., Zaletel, M., Temme, K., Kandala, A.: Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023)

    Article  ADS  Google Scholar 

  2. Google Quantum Lab AI.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019)

    Article  Google Scholar 

  3. Pino, J.M., Dreiling, J.M., Figgatt, C., Gaebler, J.P., Moses, S.A., Allman, M.S., Baldwin, C.H., Foss-Feig, M., Hayes, D., Mayer, K., Ryan-Anderson, C., Neyenhuis, B.: Demonstration of the trapped-ion quantum CCD computer architecture. Nature 592, 209 (2021)

    Article  ADS  Google Scholar 

  4. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  5. Bharti, K., Cervera-Lierta, A., Kyaw, T.H., Haug, T., Alperin-Lea, S., Anand, A., Degroote, M., Heimonen, H., Kottmann, J.S., Menke, T., Mok, W.-K., Sim, S., Kwek, L.-C., Aspuru-Guzik, A.: Noisy intermediate-scale quantum algorithms. Rev. Modern Phys. 94, 015004 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  6. Alok, A., Meizhong, L., Prabh S. B., Vinay P.: Quantum Image Processing. arXiv:2203.01831 [quant-ph].

  7. Schuld, M., Bocharov, A., Svore, K., Wiebe, N.: Circuit centric quantum classifiers. Phys. Rev. A 101, 032308 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  8. Schuld, M., Fingerhuth, M., Petruccione, F.: Implementing a distance-based classifier with a quantum interference circuit. EPL (Europhysics Letters) 119, 60002 (2017).

  9. Takaki, Y., Mitarai, K., Negoro, M., Fujii, K., Kitagawa, M.: Learning temporal data with a variational quantum recurrent neural network. Phys. Rev. A 103, 052414 (2021)

    Article  ADS  Google Scholar 

  10. Havlíček, V., Córcoles, A.D., Temme, K., Harrow, A.W., Kandala, A., Chow, J.M., Gambetta, J.M.: Supervised learning with quantum-enhanced feature spaces. Nature 567, 209 (2019)

    Article  ADS  Google Scholar 

  11. Dunjko, V., Briegel, H.J.: Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Reports Progress Phys. 81, 074001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  12. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195 (2017)

    Article  ADS  Google Scholar 

  13. Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S.C., Endo, S., Fujii, K., McClean, J.R., Mitarai, K., Yuan, X., Cincio, L., Coles, P.J.: Variational quantum algorithms. Nat. Rev. Phys. 3, 625 (2021)

    Article  Google Scholar 

  14. Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Phys. Rev. A 98, 032309 (2018)

    Article  ADS  Google Scholar 

  15. Ren, W., Li, W., Xu, S., Wang, K., Jiang, W., Jin, F., Zhu, X., Chen, J., Song, Z., Zhang, P., Dong, H., Zhang, X., Deng, J., Gao, Y., Zhang, C., Wu, Y., Zhang, B., Guo, Q., Li, H., Wang, Z., Biamonte, J., Song, C., Deng, D., Wang, H.: Experimental quantum adversarial learning with programmable superconducting qubits. Nat. Comput. Sci. 2, 711–717 (2022)

    Article  Google Scholar 

  16. Lu, S., Duan, L., Deng, D.: Quantum adversarial machine learning. Phys. Rev. Res. Am. Phys. Soc. 2, 33212 (2020)

    Article  Google Scholar 

  17. Gong, W., Deng, D.-L.: Universal adversarial examples and perturbations for quantum classifiers. National Sci. Rev. 9, nwab130 (2021).

  18. Yan, F., Venegas-Andraca, S.E. (2020). Quantum Image Representations. In: Quantum Image Processing. Springer, Singapore. https://doi.org/10.1007/978-981-32-9331-1_2.

  19. Liu, Y., Qi, Z., Liu, Q.: Comparison of the similarity between two quantum images. Sci. Rep. 12, 7776 (2022)

    Article  ADS  Google Scholar 

  20. Liu, X., Zhou, R., El-Rafei, A., Li, F., Xu, R.: Similarity assessment of quantum images. Quantum Inf. Process. 18(8), 244 (2019)

    Article  ADS  Google Scholar 

  21. Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14, 4001–4026 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Zhou, R., Hu, W., Fan, P., Hou, I.: Quantum realization of the bilinear interpolation method for NEQR. Sci. Rep. 7, 1–17 (2017)

    ADS  Google Scholar 

  23. Yao, X., Wang, H., Liao, Z., Chen, M., Pan, J., Li, J., Zhang, K., Lin, X., Wang, Z., Luo, Z., Zheng, W., Li, J., Zhao, M., Peng, X., Suter, D.: Quantum image processing and its application to edge detection: Theory and experiment. Phys. Rev. x. 7(3), 031041 (2017)

    Google Scholar 

  24. Zhang, Y., Lu, K., Gao, Y.: QSobel: A novel quantum image edge extraction algorithm. Sci. China Inf. Sci. 58, 1–13 (2015)

    ADS  Google Scholar 

  25. He, Y., Luo, M.X., Zhang, E., Wang, H.K., Wang, X.F.: Decompositions of n-qubit toffoli gates with linear circuit complexity. Int. J. Theor. Phys. 56, 2350–2361 (2017)

    Article  MathSciNet  Google Scholar 

  26. Gidney, C.: https://algassert.com/circuits/2015/06/05/Constructing-Large-Controlled-Nots.html

  27. Sleeman, J., Dorband, J., Halem, M. A.: A hybrid approach: Convolutional autoencoders for quantum image compression and RBMs for generative learning (Conference Presentation). In: Quantum Information Science, Sensing, and Computation XII. (2020). https://doi.org/10.1117/12.2558832.

  28. Jiang, N., Lu, X., Hu, H., Dang, Y., Cai, Y.: A novel quantum image compression method based on JPEG. Int. J. Theor. Phys. 57, 1 (2017).

  29. Amankwah, M.G., Camps, D., Bethel, E.W., Beeumen, R.V., Perciano, T.: Quantum pixel representations and compression for N-dimensional images. Sci. Rep. 12, 7712 (2022)

    Article  ADS  Google Scholar 

  30. Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: A novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(12), 2833–2860 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  31. Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T.: ” Gray Codes.” In: Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed.. Cambridge University Press, Cambridge, pp 886-888 (1992).

  32. Vartiainen, J.J., Mottonen, M., Salomaa, M.M.: Efficient decomposition of quantum gates. Phys. Rev. Lett. 92, 177902 (2004)

    Article  ADS  Google Scholar 

  33. Hayit, G., Ginneken, B.V., Summers, R.M.: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE T. Med. Imaging 35, 1153 (2016)

    Article  Google Scholar 

  34. Polanco, A.: Medical MNIST classification (2017). https://github.com/apolanco3225/Medical-MNIST-Classification

  35. Sang, J., Wang, S., Li, Q.: A novel quantum representation of color digital images. Quantum Inf. Process. 16, 42–56 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  36. Wakerly, J. F.: Digital design : principles and practices. Prentice Hall, New Jersey (1989).

  37. Rosenbaum, D., Perkowski, M.: Extended superposed quantum-state initialization using disjoint prime implicants. Phys. Rev. A 79(5), 52310 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  38. Jumade, R., Sawaya, N. P. D.: Data is often loadable in short depth: Quantum circuits from tensor networks for finance, images, fluids, and proteins. arXiv:2309.13108 [quant-ph].

Download references

Acknowledgments

This work is funded by Qilu Normal University with Grant No. JG202235.

Author information

Authors and Affiliations

Authors

Contributions

You-hang Liu is responsible for designing the algorithms, programming software, writing the original draft and preparing all figures and tables. Xiao-shuang Cheng and You-hang Liu are responsible for validating the effectiveness of the algorithms. All authors reviewed the manuscript.

Corresponding author

Correspondence to You-hang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Yh., Cheng, Xs., Loh, Cw. et al. Efficient preparation of lossless quantum images based on Gray code. Quantum Inf Process 23, 161 (2024). https://doi.org/10.1007/s11128-024-04369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04369-y

Keywords