Abstract
An important problem in quantum information is to construct multiqubit unextendible product bases (UPBs). By using the unextendible orthogonal matrices, we first construct a 7-qubit UPB of size 11 and prove its existence. It turns out that the UPB corresponds to a complete graph with 11 vertices constructed by three sorts of nonisomorphic graphs. Taking the graphs as product vectors, we show that they are in three different orbits up to local unitary equivalence. Next, we also provide more methods to construct UPBs and present the number of sorts of nonisomorphic graphs of complete graphs corresponding to some known UPBs and their orbits. Moreover, we graph-theoretically show that the UPB is weakly locally indistinguishable in the bipartite systems of two (three) qubits and five (four) qubits, respectively. This result is applied in secret sharing.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
All data is available in the text and supplementary materials. There is no additional data to cite.
References
Bennett, C.H., Divincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82(26), 5385–5388 (1998)
Bennett, C.H., Divincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59(2), 1070 (1998)
Bennett, C.H., Divincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82(26), 5385–5388 (1999)
Terhal, B.M.: A family of indecomposable positive linear maps based on entangled quantum states. Linear Algebra Appl. 323(1–3), 61–73 (2012)
Alon, N., Lovász, L.: Unextendible product bases. J. Comb. Theory Ser. A 95(1), 169–179 (2001)
DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases, uncompletable product bases and bound entanglement. Commun. Math. Phys. 238, 379–410 (2003)
Chen, J., Johnston, N.: The minimum size of unextendible product bases in the bipartite case (and some multipartite cases). Commun. Math. Phys. 333(1), 351–365 (2013)
Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)
Tóth, G., Knapp, C., Gühne, O., Briegel, H.J.: Optimal spin squeezing inequalities detect in spin models. Phys. Rev. Lett. 99, 250405 (2007)
Chen, L., Friedland, S.: The tensor rank of tensor product of two three-qubit w states is eight. Linear Algebra Appl. 543, 1–16 (2018)
Dicarlo, L., Reed, M.D., Sun, L., Johnson, B.R., Chow, J.M., Gambetta, J.M., Frunzio, L., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467(7315), 574–8 (2010)
Augusiak, R., Fritz, T., Kotowski, M., Kotowski, M., Pawowski, M., Lewenstein, M., Acn, A.: Tight bell inequalities with no quantum violation from qubit unextendible product bases. Phys. Rev. A 85(4), 4233–4237 (2012)
Feng, K.: Unextendible product bases and \(1\)-factorization of complete graphs. Discrete Appl. Math. 154, 942–949 (2006)
Wang, K., Chen, L., Shen, Y., Sun, Y., Zhao, L.J.: Constructing 2 \(\times \) 2 \(\times \) 4 and 4 \(\times \) 4 unextendible product bases and positive-partial-transpose entangled states. Linear Multilinear Algebra, pp. 1–16 (2019)
Wang, Y.L., Li, M.S., Fei, S.M.: Unextendible maximally entangled bases in C d\(\otimes \)C d. Phys. Rev. A 90(3), 034301 (2014)
Johnston, N.: The structure of qubit unextendible product bases. J. Phys. A Math. Theor. 47(42), 424034 (2014)
Wang, K., Chen, L.: The construction of 7-qubit unextendible product bases of size ten. Quantum Inf. Process. 19(6), 1–17 (2020)
Vasudev, C.: Graph theory with applications. Math. Gaz. 62(419), 237–238 (2006)
Belhaj, A., Brahim Sedra, M., Segui, A.: Graph theory and qubit information systems of extremal black branes. J. Phys. A Math. Theor. 48(4), 045401 (2015)
Duan, R., Winter, A.: No-signalling assisted zero-error capacity of quantum channels and an information theoretic interpretation of the Lovasz number. IEEE Trans. Inf. Theory 62(2), 891–914 (2014)
Gravier, S., Javelle, J., Mhalla, M., Perdrix, S.: Quantum secret sharing with graph states (2012)
Majewski, W.A.: On positive maps in quantum information. Russ. J. Math. Phys. 21(3), 362–372 (2014)
Angeles-Canul, R.J., Norton, R.M., Opperman, M.C., Paribello, C.C., Russell, M.C., Tamon, C.: Quantum perfect state transfer on weighted join graphs. Int. J. Quantum Inf. 7(08), 1429–1445 (2009)
Walgate, J., Hardy, L.: Nonlocality, asymmetry, and distinguishing bipartite states. Phys. Rev. Lett. 89(14), 147901 (2002)
Ghosh, S., Kar, G., Roy, A., Sarkar, D., Sen, U.: Local indistinguishability of orthogonal pure states by using a bound on distillable entanglement. Phys. Rev. A 65(6), 032307 (2002)
Walgate, J., Short, A.J., Hardy, L., Vedral, V.: Local distinguishability of multipartite orthogonal quantum states. Phys. Rev. Lett. 85(23), 4972–4975 (2001)
Matthews, W., Wehner, S., Winter, A.: Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding. Commun. Math. Phys. 291(3), 813–843 (2009)
Eggeling, T., Werner, R.F.: Hiding classical data in multi-partite quantum states. Phys. Rev. Lett. 89(9), 097905 (2002)
Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78(4), 144 (2012)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)
De Rinaldis, S.: Distinguishability of complete and unextendible product bases. Phys. Rev. A 70(2), 690 (2004)
Walgate, J., Short, A.J., Lucien, H., Vlatko, V.: Local distinguishability of multipartite orthogonal quantum states. Phys. Rev. Lett. 85(23), 4972 (2000)
Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 5385–5388 (1999)
Johnston, N.: The minimum size of qubit unextendible product bases. Eprint arxiv, 22 (2013)
Chen, L., Djokovic, D.Z.: Multiqubit UPB: the method of formally orthogonal matrices. J. Phys. A Math. Theor. 51(26), 265302 (2018)
Johnston, N.: The minimum size of qubit unextendible product bases (2013)
Shi, F., Hu, M., Chen, L., Zhang, X.: Strong quantum nonlocality with entanglement (2020)
Halder, S., Banik, M., Agrawal, S., Bandyopadhyay, S.: Strong quantum nonlocality without entanglement. Phys. Rev. Lett. 122, 040403 (2019)
Terhal, B.M., DiVincenzo, D.P., Leung, D.W.: Hiding bits in bell states. Phys. Rev. Lett. 86, 5807–5810 (2001)
DiVincenzo, D.P., Leung, D.W., Terhal, B.M.: Quantum data hiding. IEEE Trans. Inf. Theory 48(3), 580–598 (2002)
Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2008)
Acknowledgements
The authors thank Lin Chen for the suggestions.
Author information
Authors and Affiliations
Contributions
Yize Sun wrote and revised this paper, and designed all graphs. Baoshan Wang provided valuable suggestions and revised this paper.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sun, Y., Wang, B. The construction and weakly local indistinguishability of multiqubit unextendible product bases. Quantum Inf Process 23, 191 (2024). https://doi.org/10.1007/s11128-024-04379-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04379-w