Skip to main content

Advertisement

Log in

The construction and weakly local indistinguishability of multiqubit unextendible product bases

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

An important problem in quantum information is to construct multiqubit unextendible product bases (UPBs). By using the unextendible orthogonal matrices, we first construct a 7-qubit UPB of size 11 and prove its existence. It turns out that the UPB corresponds to a complete graph with 11 vertices constructed by three sorts of nonisomorphic graphs. Taking the graphs as product vectors, we show that they are in three different orbits up to local unitary equivalence. Next, we also provide more methods to construct UPBs and present the number of sorts of nonisomorphic graphs of complete graphs corresponding to some known UPBs and their orbits. Moreover, we graph-theoretically show that the UPB is weakly locally indistinguishable in the bipartite systems of two (three) qubits and five (four) qubits, respectively. This result is applied in secret sharing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data is available in the text and supplementary materials. There is no additional data to cite.

References

  1. Bennett, C.H., Divincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82(26), 5385–5388 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bennett, C.H., Divincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59(2), 1070 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H., Divincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82(26), 5385–5388 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  4. Terhal, B.M.: A family of indecomposable positive linear maps based on entangled quantum states. Linear Algebra Appl. 323(1–3), 61–73 (2012)

    MathSciNet  Google Scholar 

  5. Alon, N., Lovász, L.: Unextendible product bases. J. Comb. Theory Ser. A 95(1), 169–179 (2001)

    Article  MathSciNet  Google Scholar 

  6. DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases, uncompletable product bases and bound entanglement. Commun. Math. Phys. 238, 379–410 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  7. Chen, J., Johnston, N.: The minimum size of unextendible product bases in the bipartite case (and some multipartite cases). Commun. Math. Phys. 333(1), 351–365 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)

    Article  ADS  Google Scholar 

  9. Tóth, G., Knapp, C., Gühne, O., Briegel, H.J.: Optimal spin squeezing inequalities detect in spin models. Phys. Rev. Lett. 99, 250405 (2007)

    Article  ADS  Google Scholar 

  10. Chen, L., Friedland, S.: The tensor rank of tensor product of two three-qubit w states is eight. Linear Algebra Appl. 543, 1–16 (2018)

    Article  MathSciNet  Google Scholar 

  11. Dicarlo, L., Reed, M.D., Sun, L., Johnson, B.R., Chow, J.M., Gambetta, J.M., Frunzio, L., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467(7315), 574–8 (2010)

    Article  ADS  Google Scholar 

  12. Augusiak, R., Fritz, T., Kotowski, M., Kotowski, M., Pawowski, M., Lewenstein, M., Acn, A.: Tight bell inequalities with no quantum violation from qubit unextendible product bases. Phys. Rev. A 85(4), 4233–4237 (2012)

    Article  Google Scholar 

  13. Feng, K.: Unextendible product bases and \(1\)-factorization of complete graphs. Discrete Appl. Math. 154, 942–949 (2006)

    Article  MathSciNet  Google Scholar 

  14. Wang, K., Chen, L., Shen, Y., Sun, Y., Zhao, L.J.: Constructing 2 \(\times \) 2 \(\times \) 4 and 4 \(\times \) 4 unextendible product bases and positive-partial-transpose entangled states. Linear Multilinear Algebra, pp. 1–16 (2019)

  15. Wang, Y.L., Li, M.S., Fei, S.M.: Unextendible maximally entangled bases in C d\(\otimes \)C d. Phys. Rev. A 90(3), 034301 (2014)

    Article  ADS  Google Scholar 

  16. Johnston, N.: The structure of qubit unextendible product bases. J. Phys. A Math. Theor. 47(42), 424034 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  17. Wang, K., Chen, L.: The construction of 7-qubit unextendible product bases of size ten. Quantum Inf. Process. 19(6), 1–17 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  18. Vasudev, C.: Graph theory with applications. Math. Gaz. 62(419), 237–238 (2006)

    Google Scholar 

  19. Belhaj, A., Brahim Sedra, M., Segui, A.: Graph theory and qubit information systems of extremal black branes. J. Phys. A Math. Theor. 48(4), 045401 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. Duan, R., Winter, A.: No-signalling assisted zero-error capacity of quantum channels and an information theoretic interpretation of the Lovasz number. IEEE Trans. Inf. Theory 62(2), 891–914 (2014)

    Article  MathSciNet  Google Scholar 

  21. Gravier, S., Javelle, J., Mhalla, M., Perdrix, S.: Quantum secret sharing with graph states (2012)

  22. Majewski, W.A.: On positive maps in quantum information. Russ. J. Math. Phys. 21(3), 362–372 (2014)

    Article  MathSciNet  Google Scholar 

  23. Angeles-Canul, R.J., Norton, R.M., Opperman, M.C., Paribello, C.C., Russell, M.C., Tamon, C.: Quantum perfect state transfer on weighted join graphs. Int. J. Quantum Inf. 7(08), 1429–1445 (2009)

    Article  Google Scholar 

  24. Walgate, J., Hardy, L.: Nonlocality, asymmetry, and distinguishing bipartite states. Phys. Rev. Lett. 89(14), 147901 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  25. Ghosh, S., Kar, G., Roy, A., Sarkar, D., Sen, U.: Local indistinguishability of orthogonal pure states by using a bound on distillable entanglement. Phys. Rev. A 65(6), 032307 (2002)

    Article  ADS  Google Scholar 

  26. Walgate, J., Short, A.J., Hardy, L., Vedral, V.: Local distinguishability of multipartite orthogonal quantum states. Phys. Rev. Lett. 85(23), 4972–4975 (2001)

    Article  ADS  Google Scholar 

  27. Matthews, W., Wehner, S., Winter, A.: Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding. Commun. Math. Phys. 291(3), 813–843 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. Eggeling, T., Werner, R.F.: Hiding classical data in multi-partite quantum states. Phys. Rev. Lett. 89(9), 097905 (2002)

    Article  ADS  Google Scholar 

  29. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78(4), 144 (2012)

    MathSciNet  Google Scholar 

  30. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  31. De Rinaldis, S.: Distinguishability of complete and unextendible product bases. Phys. Rev. A 70(2), 690 (2004)

    Article  MathSciNet  Google Scholar 

  32. Walgate, J., Short, A.J., Lucien, H., Vlatko, V.: Local distinguishability of multipartite orthogonal quantum states. Phys. Rev. Lett. 85(23), 4972 (2000)

    Article  ADS  Google Scholar 

  33. Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 5385–5388 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  34. Johnston, N.: The minimum size of qubit unextendible product bases. Eprint arxiv, 22 (2013)

  35. Chen, L., Djokovic, D.Z.: Multiqubit UPB: the method of formally orthogonal matrices. J. Phys. A Math. Theor. 51(26), 265302 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  36. Johnston, N.: The minimum size of qubit unextendible product bases (2013)

  37. Shi, F., Hu, M., Chen, L., Zhang, X.: Strong quantum nonlocality with entanglement (2020)

  38. Halder, S., Banik, M., Agrawal, S., Bandyopadhyay, S.: Strong quantum nonlocality without entanglement. Phys. Rev. Lett. 122, 040403 (2019)

    Article  ADS  Google Scholar 

  39. Terhal, B.M., DiVincenzo, D.P., Leung, D.W.: Hiding bits in bell states. Phys. Rev. Lett. 86, 5807–5810 (2001)

    Article  ADS  Google Scholar 

  40. DiVincenzo, D.P., Leung, D.W., Terhal, B.M.: Quantum data hiding. IEEE Trans. Inf. Theory 48(3), 580–598 (2002)

    Article  MathSciNet  Google Scholar 

  41. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2008)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Lin Chen for the suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Yize Sun wrote and revised this paper, and designed all graphs. Baoshan Wang provided valuable suggestions and revised this paper.

Corresponding author

Correspondence to Yize Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 852 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Wang, B. The construction and weakly local indistinguishability of multiqubit unextendible product bases. Quantum Inf Process 23, 191 (2024). https://doi.org/10.1007/s11128-024-04379-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04379-w

Keywords

Navigation