Skip to main content
Log in

State transfer on the multi-access channel network

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

As a new functional network supporting communication, quantum network can provide higher security and lower complexity for quantum information processing. Based on the one-to-one quantum state merging and quantum state redistribution, we first generalize them to the multi-to-one situation and give the optimal cost pair for merging or redistributing quantum states from each sender to the receiver in turn. It is proved that previously received information can reduce the cost of the next transfer. Then, using the method of fusion, we propose a state transfer protocol over the multi-access channel network with one intermediate node and provide its optimal cost pair. Finally, two specific examples are given to demonstrate our results when a GHZ-like state or a Werner-type state is taken as the shared entanglement resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Meter, R.V.: Quantum networking and internetworking. IEEE Network 26, 59–64 (2012)

    Google Scholar 

  2. Cacciapuoti, A.S., Caleffi, M., Tafuri, F., Cataliotti, F.S., Gherardini, S., Bianchi, G.: Quantum internet: networking challenges in distributed quantum computing. IEEE Network 34, 137–143 (2020)

    Google Scholar 

  3. Yan, Y.F., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon. Front. Phys. 16, 11501 (2021)

    ADS  Google Scholar 

  4. Liu, B., Xia, S., Xiao, D., Huang, W., Xu, B.J., Li, Y.: Decoy-state method for quantum-key-distribution-based quantum private query. Sci. China Phys. Mech. Astron. 65, 240312 (2022)

    ADS  Google Scholar 

  5. Li, Z.H., Xue, K.P., Li, J., Yu, N.H., Wei, D.S.L., Li, R.D.: Connection-oriented and connectionless remote entanglement distribution strategies in quantum networks. IEEE Network 36, 150–156 (2022)

    Google Scholar 

  6. Luo, M.X.: Nonsignaling causal hierachy of general multisource networks. Phys. Rev. A 101, 062317 (2020)

    ADS  MathSciNet  Google Scholar 

  7. Zhou, N.R., Zhang, T.F., Xie, X.W., Wu, J.Y.: Hybrid quantum-classical generative adversarial networks for image generation via learning discrete distribution. Signal Process.: Image Commun. 110, 116891 (2023)

    Google Scholar 

  8. Gong, L., Ma, S.Y., Jiang, J.L.: Controlled cyclic remote preparation. Commun. Theor. Phys. 75, 105103 (2023)

    ADS  MathSciNet  Google Scholar 

  9. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    ADS  MathSciNet  Google Scholar 

  10. Lo, A.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    ADS  Google Scholar 

  11. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    ADS  Google Scholar 

  12. Ma, S.Y., Jiang, J.L., Yan, X.: Hierarchical quantum information splitting of an arbitrary m-qudit state with multiparty. Quantum Inf. Process. 22, 263 (2023)

  13. Wang, S., Liu, B., Huang, W., Xu, B.J., Li, Y.: Memory-free quantum secret sharing protocol with collective detection. Quantum Inf. Process. 22, 181 (2023)

    ADS  MathSciNet  Google Scholar 

  14. Rathi, D., Kumar, S.: A \(d\)-level quantum secret sharing scheme with cheat-detection \((t, m)\) threshold. Quantum Inf. Process. 22, 183 (2023)

    ADS  MathSciNet  Google Scholar 

  15. Lu, Y.J.: A novel practical quantum secure direct communication protocol. Quantum Inf. Process. 60, 1159–1163 (2021)

    ADS  MathSciNet  Google Scholar 

  16. Sheng, Y.B., Zhou, L., Long, G.L.: One-step quantum secure direct communication. Sci. Bull. 67, 367–374 (2022)

    Google Scholar 

  17. Zhou, L., Sheng, Y.B.: One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 65, 250311 (2022)

    ADS  Google Scholar 

  18. Horodecki, M., Oppenheim, J., Winter, A.: Partial quantum information. Nature 436, 673–676 (2005)

    ADS  Google Scholar 

  19. Devetak, I., Yard, J.: Exact cost of redistributing multipartite quantum states. Phys. Rev. Lett. 100, 230501 (2008)

    ADS  Google Scholar 

  20. Yard, J.T., Devetak, I.: Optimal quantum source coding with quantum side information at the encoder and decoder. IEEE Trans. Inf. Theor. 55, 5339–5351 (2009)

    MathSciNet  Google Scholar 

  21. Lee, Y., Lee, S.: State transfer with quantum side information. Quantum Inf. Process. 17, 268 (2018)

    ADS  MathSciNet  Google Scholar 

  22. Wakakuwa, E., Soeda, A., Murao, M.: A coding theorem for bipartite unitaries in distributed quantum computation. IEEE Trans. Inf. Theor. 63, 5372–5403 (2017)

    MathSciNet  Google Scholar 

  23. Piparo, N.L., Hanks, M., Gravel, C., Nemoto, K., Munro, W.J.: Resource reduction for distributed quantum information processing using quantum multiplexed photons. Phys. Rev. Lett. 124, 210503 (2020)

    Google Scholar 

  24. Avis, D., Hayden, P., Savov, I.: Distributed compression and multiparty squashed entanglement. J. Phys. A: Math. Theor. 41, 115301 (2008)

    ADS  MathSciNet  Google Scholar 

  25. Yang, D., Eisert, J.: Entanglement combing. Phys. Rev. Lett. 103, 220501 (2009)

    ADS  MathSciNet  Google Scholar 

  26. Yang, H.Y., Ye, T.Y.: Secure multi-party quantum summation based on quantum Fourier transform. Quantum Inf. Process. 17, 129 (2018)

    ADS  MathSciNet  Google Scholar 

  27. Streltsov, A., Meignant, C., Eisert, J.: Rates of multipartite entanglement transformations. Phys. Rev. Lett. 125, 080502 (2020)

    ADS  MathSciNet  Google Scholar 

  28. Carleial, A.: Multiple-access channels with different generalized feedback signals. IEEE Trans. Inf. Theor. 28, 841–850 (1982)

    Google Scholar 

  29. Yard, J., Hayden, P., Devetak, I.: Capacity theorems for quantum multiple-access channels: classical-quantum and quantum-quantum capacity regions. IEEE Trans. Inf. Theor. 54, 3091 (2008)

    MathSciNet  Google Scholar 

  30. Laurenza, R., Pirandola, S.: General bounds for sender-receiver capacities in multipoint quantum communications. Phys. Rev. A 96, 032318 (2017)

    ADS  Google Scholar 

  31. Qi, H., Wang, Q., Wilde, M.M.: Applications of position-based coding to classical communication over quantum channels. J. Phys. A: Math. Theor. 51, 444002 (2018)

    ADS  MathSciNet  Google Scholar 

  32. Leditzky, F., Alhejji, M.A., Levin, J., Smith, G.: Playing games with multiple access channels. Nat. Commun. 11, 1497 (2020)

    ADS  Google Scholar 

  33. Hao, S.H., Shi, H.W., Li, W., Shapiro, J.H., Zhuang, Q.T., Zhang, Z.S.: Entanglement-assisted communication surpassing the ultimate classical capacity. Phys. Rev. Lett. 126, 250501 (2021)

    ADS  Google Scholar 

  34. Traskov, D., Kramer, G.: Reliable communication in networks with multi-access interference. In: IEEE Information Theory Workshop (ITW), pp. 343-348 (2007)

  35. Anathi, M., Vijayakumar, K.: An intelligent approach for dynamic network traffic restriction using MAC address verification. Comput. Commun. 154, 559–564 (2020)

    Google Scholar 

  36. Wu, F., Chen, L., Zhao, N., Chen, Y., Yu, F.R., Wei, G.: Computation over multi-access channels: multi-hop implementation and resource allocation. IEEE Trans. Commun. 69, 1038–1052 (2021)

    ADS  Google Scholar 

  37. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    MathSciNet  Google Scholar 

  38. Khinchin, A.I.: Mathematical foundations of information theory. Dover Publications, New York, USA (1957)

    Google Scholar 

  39. Neumann, J.V.: Mathematical foundations of quantum mechanics. In: Investigations in Physics, pp. 127–136. Princeton University Press, New Jersey (1955)

  40. Bennett, C.H., Shor, P.W.: Quantum information theory. IEEE Trans. Inf. Theor. 44, 2724–2742 (1998)

    MathSciNet  Google Scholar 

  41. Bennett, C.H., Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Entanglement-assisted classical capacity of noisy quantum channels. Phys. Rev. Lett. 83, 3081–3084 (1999)

    ADS  Google Scholar 

  42. Bennett, C.H., Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Inf. Theor. 48, 2637–2655 (2002)

    MathSciNet  Google Scholar 

  43. Mendonca, P.E.M.F., Napolitano, R.D.J., Marchiolli, M.A., Foster, C.J., Liang, Y.C.: Alternative fidelity measure between quantum states. Phys. Rev. A 78, 052330 (2008)

    ADS  Google Scholar 

  44. Giovannetti, V., Guha, S., Lloyd, S., Maccone, L., Shapiro, J.H., Yuen, H.P.: Classical capacity of the lossy bosonic channel: the exact solution. Phys. Rev. Lett. 92, 027902 (2004)

    ADS  Google Scholar 

  45. Yen, B.J., Shapiro, J.H.: Multiple-access bosonic communications. Phys. Rev. A 72, 062312 (2005)

    ADS  Google Scholar 

  46. Shi, H., Hsieh, M.H., Guha, S., Zhang, Z.S., Zhuang, Q.T.: Entanglement-assisted capacity regions and protocol designs for quantum multiple-access channels. npj Quantum Inf. 7, 74 (2021)

  47. Feng, G., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)

    ADS  Google Scholar 

  48. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bell’s theorem: In: Bell’s Theorem, Quantum Theory and Conceptions of the Universe, pp. 69–72. Springer, Dordrecht, Netherlands (1989)

  49. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    ADS  Google Scholar 

  50. Fortes, R., Rigolin, G.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92, 012338 (2015)

    ADS  Google Scholar 

  51. Wang, M.M., Qu, Z.G., Wang, W., Chen, J.G.: Effect of noise on deterministic joint remote preparation of an arbitrary two-qubit state. Quantum Inf. Process. 16, 140 (2017)

    ADS  Google Scholar 

  52. Zhang, P., Ma, S.Y., Gong, L.: Deterministic Remote Preparation via the \(\chi \) state in noisy environment. Int. J. Theor. Phys. 58, 2795–2809 (2019)

    MathSciNet  Google Scholar 

  53. Harraz, S., Cong, S., Nieto, J.J.: Optimal tripartite quantum teleportation protocol through noisy channels. Quantum Inf. Process. 22, 83 (2023)

    ADS  MathSciNet  Google Scholar 

  54. Yan, P.S., Zhou, L., Zhong, W., Sheng, Y.B.: Advances in quantum entanglement purification. Sci. China Phys. Mech. 66, 250301 (2023)

    Google Scholar 

  55. Qu, C.C., Zhou, L., Sheng, Y.B.: Entanglement concentration for concatenated Greenberger-Horne-Zeilinger state. Quantum Inf. Process. 14, 4131–4146 (2015)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 62172341), Fundamental Research Funds for the Central Universities (No.2682014CX095), Sichuan Natural Science Foundation (No. 2023NSFSC0447) and the Natural Science Foundation of Henan Province of China (No. 242300420276).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songya Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Luo, M. & Ma, S. State transfer on the multi-access channel network. Quantum Inf Process 23, 171 (2024). https://doi.org/10.1007/s11128-024-04380-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04380-3

Keywords