Abstract
We present a quantum teleportation scheme for single qubits, qutrits, and ququads using maximally entangled pairs of two ququads. Additionally, we demonstrate that, under a specific mapping, single ququad teleportation is equivalent to two-qubit teleportation using generalized Bell states. Furthermore, we establish a dense (superdense) coding scheme for sending four bits of classical information using a single ququad state. We also investigate the efficiency of the single ququad quantum teleportation scheme by studying the fidelity of teleportation when subjected to noise, such as amplitude damping, depolarizing channel, phase damping, and bit flip. Finally, we investigate noise effects in two qubit teleportation and compare its results with the ququad case. We observe that in both cases, adding more noise increases the fidelity of teleportation. Additionally, we show that qubit teleportation is more resilient to noise than ququad teleportation.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)
Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)
Bennett, C.H., Hayden, P., Leung, D.W., Shor, P.W., Winter, A.: Remote preparation of quantum states. IEEE Trans. Inf. Theory 51(1), 56–74 (2005)
Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)
Sheng, Y.-B., Zhou, L., Long, G.-L.: One-step quantum secure direct communication. Sci. Bull. 67(4), 367–374 (2022)
Zhou, L., Sheng, Y.-B.: One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 65(5), 250311 (2022)
Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)
Bao, X.-H., Xiao-Fan, X., Li, C.-M., Yuan, Z.-S., Chao-Yang, L., Pan, J.-W.: Quantum teleportation between remote atomic-ensemble quantum memories. Proc. Natl. Acad. Sci. 109(50), 20347–20351 (2012)
Furusawa, A., Sorensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)
Marcikic, I., De Riedmatten, H., Tittel, W., Zbinden, H., Gisin, N.: Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421(6922), 509–513 (2003)
Mark Riebe, H., Häffner, CF Roos., Hänsel, W., Benhelm, J., Lancaster, G.P.T., Körber, T.W., Becher, C., Schmidt-Kaler, F., James, D.F.V., et al.: Deterministic quantum teleportation with atoms. Nature 429(6993), 734–737 (2004)
Steffen, L., Salathe, Y., Oppliger, M., Kurpiers, P., Baur, M., Lang, C., Eichler, C., Puebla-Hellmann, G., Fedorov, A., Wallraff, A.: Deterministic quantum teleportation with feed-forward in a solid state system. Nature 500(7462), 319–322 (2013)
Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71, 032303 (2005)
Shi, B.-S., Tomita, A.: Teleportation of an unknown state by w state. Phys. Lett. A 296(4), 161–164 (2002)
Joo, J., Park, Y.-J., Sangchul, O., Kim, J.: Quantum teleportation via a w state. New J. Phys. 5, 136–136 (2003)
Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96(6), 060502 (2006)
Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)
Sheng, Y.-B., Zhou, L.: Demonstration of high-dimensional controlled quantum teleportation for the first time. Sci. China Phys. Mech. Astron. 67(3), 230331 (2024)
Kim, M.S., Hwang, M.-R., Jung, E., Park, D.K.: Scrambling and quantum teleportation. Quantum Inf. Process. 22(4), 176 (2023)
Zhang, Z., Sang, Y.: Bidirectional quantum teleportation in multi-hop communication network. Quantum Inf. Process. 22(5), 201 (2023)
Muthukrishnan, A., Stroud, C.R.: Multivalued logic gates for quantum computation. Phys. Rev. A 62, 052309 (2000)
Kaszlikowski, D., Gnaciński, P., Żukowski, M., Miklaszewski, W., Zeilinger, A.: Violations of local realism by two entangled \(\mathit{N}\)-dimensional systems are stronger than for two qubits. Phys. Rev. Lett. 85, 4418–4421 (2000)
Dada, A.C., Leach, J., Buller, G.S., Padgett, M.J., Andersson, E.: Experimental high-dimensional two-photon entanglement and violations of generalized bell inequalities. Nat. Phys. 7(9), 677–680 (2011)
Fickler, R., Lapkiewicz, R., Plick, W.N., Krenn, M., Schaeff, C., Ramelow, S., Zeilinger, A.: Quantum entanglement of high angular momenta. Science 338(6107), 640–643 (2012)
Erhard, M., Malik, M., Krenn, M., Zeilinger, A.: Experimental greenberger-horne-zeilinger entanglement beyond qubits. Nat. Photon. 12(12), 759–764 (2018)
Krenn, M., Kottmann, J.S., Tischler, N., Aspuru-Guzik, A.: Conceptual understanding through efficient automated design of quantum optical experiments. Phys. Rev. X 11, 031044 (2021)
Gómez, E.S., Gómez, S., Machuca, I., Cabello, A., Pádua, S., Walborn, S.P., Lima, G.: Multidimensional entanglement generation with multicore optical fibers. Phys. Rev. Appl. 15, 034024 (2021)
Olislager, L., Mbodji, I., Woodhead, E., Cussey, J., Furfaro, L., Emplit, P., Massar, S., Huy, K.P., Merolla, J.-M.: Implementing two-photon interference in the frequency domain with electro-optic phase modulators. New J. Phys. 14(4), 043015 (2012)
Bernhard, C., Bessire, B., Feurer, T., Stefanov, A.: Shaping frequency-entangled qudits. Phys. Rev. A 88, 032322 (2013)
Jin, R.-B., Shimizu, R., Fujiwara, M., Takeoka, M., Wakabayashi, R., Yamashita, T., Miki, S., Terai, H., Gerrits, T., Sasaki, M.: Simple method of generating and distributing frequency-entangled qudits. Quantum Sci. Technol. 1(1), 015004 (2016)
Martin, A., Guerreiro, T., Tiranov, A., Designolle, S., Fröwis, F., Brunner, N., Huber, M., Gisin, N.: Quantifying photonic high-dimensional entanglement. Phys. Rev. Lett. 118, 110501 (2017)
Ikuta, T., Takesue, H.: Implementation of quantum state tomography for time-bin qudits. New J. Phys. 19(1), 013039 (2017)
Luo, Y.-H., Zhong, H.-S., Erhard, M., Wang, X.-L., Peng, L.-C., Krenn, M., Jiang, X., Li, L., Liu, N.-L., Chao-Yang, L., et al.: Quantum teleportation in high dimensions. Phys. Rev. Lett. 123(7), 070505 (2019)
Xiao-Min, H., Zhang, C., Bi-Heng Liu, Yu., Cai, X.-J.Y., Guo, Yu., Xing, W.-B., Huang, C.-X., Huang, Y.-F., Li, C.-F., Guo, G.-C.: Experimental high-dimensional quantum teleportation. Phys. Rev. Lett. 125, 230501 (2020)
Zhang, C., Chen, J.F., Cui, C., Dowling, J.P., Ou, Z.Y., Byrnes, T.: Quantum teleportation of photonic qudits using linear optics. Phys. Rev. A 100, 032330 (2019)
Bechmann-Pasquinucci, H., Peres, A.: Quantum cryptography with 3-state systems. Phys. Rev. Lett. 85, 3313–3316 (2000)
Bruß, D., Macchiavello, C.: Optimal eavesdropping in cryptography with three-dimensional quantum states. Phys. Rev. Lett. 88, 127901 (2002)
Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using \(\mathit{d}\)-level systems. Phys. Rev. Lett. 88, 127902 (2002)
Langford, N.K., Dalton, R.B., Harvey, M.D., O’Brien, J.L., Pryde, G.J., Gilchrist, A., Bartlett, S.D., White, A.G.: Measuring entangled qutrits and their use for quantum bit commitment. Phys. Rev. Lett. 93, 053601 (2004)
Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)
Chamoli, A., Bhandari, C.M.: Teleportation of unknown state by qutrits. Int. J. Quantum Inf. 06(02), 369–378 (2008)
Huang, Y., Yang, W.: Quantum teleportation via qutrit entangled state. Chin. J. Electron. 29(2), 228–232 (2020)
Luo, Y.-H., Zhong, H.-S., Erhard, M., Wang, X.-L., Peng, L.-C., Krenn, M., Jiang, X., Li, L., Liu, N.-L., Chao-Yang, L., Zeilinger, A., Pan, J.-W.: Quantum teleportation in high dimensions. Phys. Rev. Lett. 123, 070505 (2019)
Al-Amri, M., Evers, J., Suhail Zubairy, M.: Quantum teleportation of four-dimensional qudits. Phys. Rev. A 82, 022329 (2010)
Werner, R.F.: All teleportation and dense coding schemes. J. Phys. A Math. Gen. 34(35), 7081–7094 (2001)
Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with \(w\) states. Phys. Rev. A 74, 062320 (2006)
Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)
Pati, A.K., Parashar, P., Agrawal, P.: Probabilistic superdense coding. Phys. Rev. A 72, 012329 (2005)
Wang, C., Deng, F.-G., Li, Y.-S., Liu, X.-S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)
Grudka, A., Wójcik, A.: Symmetric scheme for superdense coding between multiparties. Phys. Rev. A 66, 014301 (2002)
Williams, B.P., Sadlier, R.J., Humble, T.S.: Superdense coding over optical fiber links with complete bell-state measurements. Phys. Rev. Lett. 118, 050501 (2017)
Xiao-Min, H., Guo, Yu., Liu, B.-H., Huang, Y.-F., Li, C.-F., Guo, G.-C.: Beating the channel capacity limit for superdense coding with entangled ququarts. Sci. Adv. 4(7), eaat9304 (2018)
Breuer, Heinz-Peter.: Petruccione, Francesco: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2007)
Sangchul, O., Lee, S., Lee, H.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002)
Li, Y.-L., Chuan-Jin, Z., Wei, D.-M.: Enhance quantum teleportation under correlated amplitude damping decoherence by weak measurement and quantum measurement reversal. Quantum Inf. Process. 18(1), 2 (2018)
Fortes, R., Rigolin, G.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92, 012338 (2015)
Xueyuan, H., Ying, G., Gong, Q., Guo, G.: Noise effect on fidelity of two-qubit teleportation. Phys. Rev. A 81, 054302 (2010)
Sebastian, A., Mansar, A.N., Randeep, N.C.: Beyond qubits: an extensive noise analysis for qutrit quantum teleportation. Int. J. Theor. Phys. 62(12), 258 (2023)
Da-Chuang, L., Zhuo-Liang, C.: Teleportation of two-particle entangled state via cluster state. Commun. Theor. Phys. 47(3), 464–466 (2007)
Liu, J.-C., Li, Y.-H., Nie, Y.-Y.: Controlled teleportation of an arbitrary two-particle pure or mixed state by using a five-qubit cluster state. Int. J. Theor. Phys. 49(8), 1976–1984 (2010)
Zheng-Yuan, X., You-Min, Y., Zhuo-Liang, C.: Teleportation of multipartite state via w state. Commun. Theor. Phys. 45(3), 433–436 (2006)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A:Quantum circuit for creating generalized Bell states
Appendix A:Quantum circuit for creating generalized Bell states
Figure 9 shows the quantum circuit for creating generalized Bell states. For a given set of input states \(\{|0000\rangle , |1000\rangle , |0100\rangle , |1100\rangle , |0001\rangle , |1001\rangle , |0101\rangle , |1101\rangle ,|0010\rangle , |1010\rangle , |0110\rangle , |1110\rangle , |0011\rangle , |1011\rangle , |0111\rangle , |1111\rangle \} \), this quantum circuit produces 16 maximally entangled four qubit states given by Eq. (15). By applying the mapping described in Eq. (13), the aforementioned four qubit states becomes computational basis state for two ququads denoted by \(\{ \vert aa \rangle , \vert ca \rangle , \vert ba \rangle , \vert da \rangle , \vert ab \rangle , \vert cb \rangle , \) \( \vert bb \rangle , \vert db \rangle , \vert ac \rangle , \vert cc \rangle , \vert bc \rangle , \vert dc \rangle , \vert ad \rangle , \vert cd \rangle , \vert bd \rangle , \vert dd \rangle \}\). Then, applying a unitary transformation equivalent to the quantum circuit shown in Fig. 9 converts the computational basis states of two ququads into maximally entangled states as given by Eq. (4). The inverse circuit (unitary transformation) is useful for generalized Bell measurements.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Randeep, N.C., Anukrishna, C. & Neha Raj, A.K. Quantum teleportation scheme using entangled two ququads and its noise effects. Quantum Inf Process 23, 192 (2024). https://doi.org/10.1007/s11128-024-04381-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04381-2