Abstract
Quantum machine learning (QML) has emerged as a promising domain offering significant computational advantages over classical counterparts. In recent times, researchers have directed their attention towards this field. The objective of this paper is to provide a thorough overview of the advancements in quantum machine learning, encompassing the state-of-the-art approaches. The machine learning field is itself quite diverse. Diversity of QML is broadened due to the respective roles the quantum information processing and machine learning play in it. The study focuses on analysing the predictive efficacy of deep learning models on time series data. After experimental evaluation, we have chosen deep learning models that have better performance on time series data. The paper illustrates how different quantum techniques such as quantum encoding, optimization, etc., are used in quantum-enhanced models and provides a comprehensive review and an experimental analysis of three state-of-the-art quantum-enhanced models. Mental health is a serious global public health concern that has permeated modern civilization. So, seven time series data related to mental health conditions were collected from SWELL-KW, Wesad and psykose. Based on the experimental findings from the current dataset, it is evident that the quantum LSTM model exhibits superior predictive performance compared to other state-of-the-art approaches.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data and material availability
Not applicable.
References
Lim, B., Zohren, S.: Time-series forecasting with deep learning: a survey. Philos. Trans. R. Soc. A 379(2194), 20200209 (2021)
Dama, F., Sinoquet, C.: Time series analysis and modeling to forecast: a survey. arXiv preprint arXiv:2104.00164 (2021)
Liu, Z., Zhu, Z., Gao, J., Xu, C.: Forecast methods for time series data: a survey. IEEE Access 9, 91896–91912 (2021)
Torres, J.F., Hadjout, D., Sebaa, A., Martínez-Álvarez, F., Troncoso, A.: Deep learning for time series forecasting: a survey. Big Data 9(1), 3–21 (2021)
Mahmoud, A., Mohammed, A.: A survey on deep learning for time-series forecasting. In: Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges, pp. 365–392 (2021)
Preskill, J.: Simulating quantum field theory with a quantum computer. arXiv preprint arXiv:1811.10085 (2018)
Ghasemian, E., Razminia, A., Rostami, H.: Quantum machine learning based on continuous variable single-photon states: an elementary foundation for quantum neural networks. Quantum Inf. Process. 22(10), 378 (2023)
Benedetti, M., Realpe-Gómez, J., Perdomo-Ortiz, A.: Quantum-assisted Helmholtz machines: a quantum–classical deep learning framework for industrial datasets in near-term devices. Quantum Sci. Technol. 3(3), 034007 (2018)
Coccia, M.: Technological trajectories in quantum computing to design a quantum ecosystem for industrial change. Technol. Anal. Strateg. Manag. 89, 1–16 (2022)
Emmanoulopoulos, D., Dimoska, S.: Quantum machine learning in finance: time series forecasting. arXiv preprint arXiv:2202.00599 (2022)
Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Phys. Rev. A 103(3), 032430 (2021)
Bhangu, K.S., Sandhu, J.K., Sapra, L.: Time series analysis of COVID-19 cases. World J. Eng. 19(1), 40–48 (2022). https://doi.org/10.1108/WJE-09-2020-0431
Fan, H., Zhang, F., Gao, Y.: Self-supervised time series representation learning by inter-intra relational reasoning. arXiv preprint arXiv:2011.13548 (2020)
Ciliberto, C., Herbster, M., Ialongo, A.D., Pontil, M., Rocchetto, A., Severini, S., Wossnig, L.: Quantum machine learning: a classical perspective. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2209), Art. no. 20170551 (2018)
Qi, H., Wang, L., Zhu, H., Gani, A., Gong, C.: The barren plateaus of quantum neural networks: review, taxonomy and trends. Quantum Inf. Process. 22(12), 435 (2023)
Zhou, J., Li, D., Tan, Y., Yang, X., Zheng, Y., Liu, X.: A multi-classification classifier based on variational quantum computation. Quantum Inf. Process. 22(11), 1–21 (2023)
Mishra, S., Tsai, C.Y.: QSurfNet: a hybrid quantum convolutional neural network for surface defect recognition. Quantum Inf. Process. 22(5), 179 (2023)
Ullah, U., Garcia-Zapirain, B.: Quantum machine learning revolution in healthcare: a systematic review of emerging perspectives and applications. IEEE Access (2024)
Surjeet, S., Bulla, C., Arya, A., Idrees, S., Singh, G., Rao, S.G., Shirahatti, A.: A quantum machine learning approach for bridging the gap between quantum and classical computing. Int. J. Intell. Syst. Appl. Eng. 12(12s), 553–560 (2024)
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195–202 (2017)
Killoran, N., Bromley, T.R., Arrazola, J.M., Schuld, M., Quesada, N., Lloyd, S.: Continuous-variable quantum neural networks. Phys. Rev. Res. 1(3), 033063 (2019)
Daskin, A.: A walk through of time series analysis on quantum computers. arXiv preprint arXiv:2205.00986 (2002)
Singh, P., Dhiman, G., Kaur, A.: A quantum approach for time series data based on graph and Schrödinger equations methods. Mod. Phys. Lett. A 33(35), 1850208 (2018)
Peral-García, D., Cruz-Benito, J., García-Peñalvo, F.J.: Systematic literature review: quantum machine learning and its applications. Comput. Sci. Rev. 51, 100619 (2024)
Jeswal, S.K., Chakraverty, S.: Recent developments and applications in quantum neural network: a review. Arch. Comput. Methods Eng. 26, 793–807 (2019)
Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameterized quantum circuits as machine learning models. Quantum Sci. Technol. 4(4), 043001 (2019)
Benedetti, M., Fiorentini, M., Lubasch, M.: Hardware-efficient variational quantum algorithms for time evolution. Phys. Rev. Res. 3(3), 033083 (2021)
Kamruzzaman, A., Alhwaiti, Y., Leider, A., Tappert, C.C.: Quantum deep learning neural networks. In: Advances in Information and Communication: Proceedings of the 2019 Future of Information and Communication Conference (FICC), vol. 2, pp. 299–311. Springer (2020)
Mangini, S., Tacchino, F., Gerace, D., Bajoni, D., Macchiavello, C.: Quantum computing models for artificial neural networks. Europhys. Lett. 134(1), 10002 (2021)
Alsubai, S., Alqahtani, A., Binbusayyis, A., Sha, M., Gumaei, A., Wang, S.: Quantum computing meets deep learning: a promising approach for diabetic retinopathy classification. Mathematics 11(9), 2008 (2023)
Gong, L.H., Pei, J.J., Zhang, T.F., Zhou, N.R.: Quantum convolutional neural network based on variational quantum circuits. Opt. Commun. 550, 129993 (2024)
Wang, A., Hu, J., Zhang, S., Li, L.: Shallow hybrid quantum-classical convolutional neural network model for image classification. Quantum Inf. Process. 23(1), 17 (2024)
Padha, A., Sahoo, A.: MAQML: a meta-approach to quantum machine learning with accentuated sample variations for unobtrusive mental health monitoring. Quantum Mach. Intell. 5(1), 17 (2023)
Padha, A., Sahoo, A.: Quantum enhanced machine learning for unobtrusive stress monitoring. In: Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing, pp. 476–483 (2022)
Padha, A., Sahoo, A.: A parametrized quantum LSTM model for continuous stress monitoring. In: 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom), pp. 261–266. IEEE (2022)
Padha, A., Sahoo, A.: Ensemble of parametrized quantum LSTM neural networks for multimodal stress monitoring, pp. 59–67. Springer, Singapore (2023)
Mishra, N., et al.: Quantum machine learning: a review and current status. In: Sharma, N., Chakrabarti, A., Balas, V.E., Martinovic, J. (eds.) Data Management, Analytics and Innovation (Advances in Intelligent Systems and Computing), vol. 1175. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5619-7_8
Yu, H., Yang, X., Zheng, S., Sun, C.: Active learning from imbalanced data: A solution of online weighted extreme learning machine. IEEE Trans. Neural Netw. Learn. Syst. 30(4), 1088–1103 (2019)
Huang, H.-L., Wu, D., Fan, D., Zhu, X.: Sci. China Inf. Sci. 63, 180501 (2020)
Awan, U., Hannola, L., Tandon, A., Goyal, R.K., Dhir, A.: Quantum computing challenges in the software industry. A fuzzy AHP-based approach. Inf. Softw. Technol. 147, 106896 (2022)
Cicconetti, C., Conti, M., Passarella, A.: Resource allocation in quantum networks for distributed quantum computing. In: 2022 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 124–132. IEEE (2022)
Wu, Y., Kolkowitz, S., Puri, S., Thompson, J.D.: Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays. Nat. Commun. 13(1), 4657 (2022)
Maheshwari, D., Sierra-Sosa, D., Garcia-Zapirain, B.: Variational quantum classifier for binary classification: Real vs synthetic dataset. IEEE Access 10, 3705–3715 (2021)
Schuld, M., Petruccione, F.: Supervised Learning with Quantum Computers, vol. 17. Springer, Berlin (2018)
Adhikary, S., Dangwal, S., Bhowmik, D.: Supervised learning with a quantum classifier using multi-level systems. Quantum Inf. Process. 19, 1–12 (2020)
Schuld, M., Killoran, N.: Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122(4), 040504 (2019)
Pointing, J.: Thesis 1: Quantum Algorithm for Handling Missing Data, Thesis 2: Simulation Method for Open Quantum Systems (Doctoral dissertation) (2018)
Singh, J., Ali, F., Shah, B., Bhangu, K.S., Kwak, D.: Emotion quantification using variational quantum state fidelity estimation. IEEE Access 10, 115108–115119 (2022). https://doi.org/10.1109/ACCESS.2022.3216890
Sweke, R., Wilde, F., Meyer, J., Schuld, M., Fährmann, P.K., Meynard-Piganeau, B., Eisert, J.: Stochastic gradient descent for hybrid quantum-classical optimization. Quantum 4, 314 (2020)
Havlíček, V., Córcoles, A.D., Temme, K., Harrow, A.W., Kandala, A., Chow, J.M., Gambetta, J.M.: Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209–212 (2019)
Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028(2014)
Tilly, J., Chen, H., Cao, S., Picozzi, D., Setia, K., Li, Y., Tennyson, J.: The variational quantum eigensolver: a review of methods and best practices. Phys. Rep. 986, 1–128 (2022)
Park, J.J., Nha, H.: Fluctuation theorem for information thermodynamics of quantum correlated systems. Entropy 25(1), 165 (2023)
Oh, S., Choi, J., Kim, J.: A tutorial on quantum convolutional neural networks (QCNN). In: 2020 International Conference on Information and Communication Technology Convergence (ICTC), pp. 236–239. IEEE (2020)
Chen, X., Jiang, B., Wu, Y., Ye, Y.: A QCNN algorithm deployed on a quantum computer. In: 2022 International Conference on Computing, Communication, Perception and Quantum Technology (CCPQT), pp. 390–395. IEEE (2022)
Qi, J., Tejedor, J.: Classical-to-quantum transfer learning for spoken command recognition based on quantum neural networks. In: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8627–8631. IEEE (2022)
Baek, H., Yun, W.J., Kim, J.: Scalable quantum convolutional neural networks. arXiv preprintarXiv:2209.12372 (2022)
Minu, R.I., Margala, M., Shankar, S.S., Chakrabarti, P., Nagarajan, G.: Early-stage esophageal cancer detection using hybrid quantum CNN. Soft. Comput. (2023). https://doi.org/10.1007/s00500-023-08333-3
Hong, Z., Wang, J., Qu, X., Zhu, X., Liu, J., Xiao, J.: Quantum convolutional neural network on protein distance prediction. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)
Chen, S.Y.C., Wei, T.C., Zhang, C., Yu, H., Yoo, S.: Quantum convolutional neural networks for high energy physics data analysis. Phys. Rev. Res. 4(1), 013231 (2022)
Hur, T., Kim, L., Park, D.K.: Quantum convolutional neural network for classical data classification. Quantum Mach. Intell. 4(1), 3 (2022)
Wei, S., Chen, Y., Zhou, Z., Long, G.: A quantum convolutional neural network on NISQ devices. AAPPS Bull. 32, 1–1 (2022)
Bisarya, A., Maouaki, W.E., Mukhopadhyay, S., Mishra, N., Kumar, S., Behera, B.K., Panigrahi, P.K. De, D.: Breast cancer detection using quantum convolutional neural networks: a demonstration on a quantum computer. medRxiv, 2020–06 (2020)
Liu, J., Lim, K.H., Wood, K.L., Huang, W., Guo, C., Huang, H.L.: Hybrid quantum-classical convolutional neural networks. Sci. China Phys. Mech. Astron. 64(9), 290311 (2021)
Houssein, E.H., Abohashima, Z., Elhoseny, M., Mohamed, W.M.: Hybrid quantum-classical convolutional neural network model for COVID-19 prediction using chest X-ray images. J. Comput. Des. Eng. 9(2), 343–363 (2022)
Yang, Y.F., Sun, M.: Semiconductor defect detection by hybrid classical-quantum deep learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2323–2332 (2022)
Chen, G., Chen, Q., Long, S., Zhu, W., Yuan, Z., Wu, Y.: Quantum convolutional neural network for image classification. Pattern Anal. Appl. 26(2), 655–667 (2023)
Matic, A., Monnet, M., Lorenz, J.M., Schachtner, B., Messerer, T.: Quantum-classical convolutional neural networks in radiological image classification. In: 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 56–66. IEEE (2022)
Amin, J., Anjum, M.A., Sharif, A., Raza, M., Kadry, S., Nam, Y.: Malaria parasite detection using a quantum-convolutional network. CMC Comput. Mater. Contin 70, 6023–6039 (2022)
Ciaramella, G., Iadarola, G., Mercaldo, F., Storto, M., Santone, A., Martinelli, F.: Introducing quantum computing in mobile malware detection. In: Proceedings of the 17th International Conference on Availability, Reliability and Security, pp. 1–8 (2022)
Liu, N., Huang, T., Gao, J., Xu, Z., Wang, D., Li, F.: Quantum-enhanced deep learning-based lithology interpretation from well logs. IEEE Trans. Geosci. Remote Sens. 60, 1–13 (2021)
Taha, S.M., Taha, Z.K.: EEG signals classification based on autoregressive and inherently quantum recurrent neural network. Int. J. Comput. Appl. Technol. 58(4), 340–351 (2018)
Choi, J., Oh, S., Kim, J.: A tutorial on quantum graph recurrent neural network (QGRNN). In: 2021 International Conference on Information Networking (ICOIN), pp. 46–49. IEEE (2021)
Takaki, Y., Mitarai, K., Negoro, M., Fujii, K., Kitagawa, M.: Learning temporal data with a variational quantum recurrent neural network. Phys. Rev. A 103(5), 052414 (2021)
Bausch, J.: Recurrent quantum neural networks. Adv. Neural. Inf. Process. Syst. 33, 1368–1379 (2020)
Chen, S.Y.C., Fry, D., Deshmukh, A., Rastunkov, V., Stefanski, C.: Reservoir computing via quantum recurrent neural networks. arXiv preprintarXiv:2211.02612(2022)
Chen, S.Y., Yoo, S., Fang, Y.L.: Quantum long short-term memory. In: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8622–8626 (2020)
Nasri, A., Yahia, N.B., Saoud, N.B., Miled, S.B.: A hybrid method based on quantum-enhanced RNN and data integration for the prediction of COVID-19 outbreak. Integrated Spatial Databases (2022)
Chen, S.Y., Fry, D., Deshmukh, A., Rastunkov, V.S., Stefanski, C.: Reservoir Computing via Quantum Recurrent Neural Networks. arXiv:2211.02612 (2022)
Hibat-Allah, M., Melko, R.G., Carrasquilla, J.F.: Supplementing Recurrent Neural Network Wave Functions with Symmetry and Annealing to Improve Accuracy. arXiv:2207.14314 (2022)
Li, Y., Wang, Z., Han, R., Shi, S., Li, J., Shang, R., et al.: Quantum Recurrent Neural Networks for Sequential Learning. arXiv preprint arXiv:2302.03244 (2023)
Abbaszade, M., Salari, V., Mousavi, S.S., Zomorodi, M., Zhou, X.: Application of quantum natural language processing for language translation. IEEE Access 9, 130434–130448 (2021)
Chen, S.Y.C., Yoo, S., Fang, Y.L.L.: Quantum long short-term memory. In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8622–8626. IEEE (2022)
Lindsay, J., & Zand, R.: A novel stochastic LSTM model inspired by quantum machine learning. In: 2023 24th International Symposium on Quality Electronic Design (ISQED), pp. 1–8. IEEE (2023)
Wang, X., Wang, X., Zhang, S.: Adverse drug reaction detection from social media based on quantum bi-LSTM with attention. IEEE Access 11, 16194–16202 (2022)
Li, S.S., Zhang, X., Zhou, S., Shu, H., Liang, R., Liu, H., Garcia, L.P.: PQLM-multilingual decentralized portable quantum language model. In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE (2023)
Akter, M.S., Shahriar, H., Bhuiya, Z.A.: Automated vulnerability detection in source code using quantum natural language processing. In: International Conference on Ubiquitous Security, pp. 83–102. Springer, Singapore (2022)
Di Sipio, R., Huang, J.H., Chen, S.Y.C., Mangini, S., Worring, M.: The dawn of quantum natural language processing. In: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8612–8616. IEEE (2022)
Yu, Y., Hu, G., Liu, C., Xiong, J., Wu, Z.: Prediction of solar irradiance one hour ahead based on quantum long short-term memory network. IEEE Trans. Quantum Eng. (2023)
Cao, Y., Zhou, X., Fei, X., Zhao, H., Liu, W., Zhao, J.: Linear-layer-enhanced quantum long short-term memory for carbon price forecasting. Quantum Mach. Intell. 5(2), 1–12 (2023)
Hou, X., Yang, Y., Wang, X.: Realization of long short-term memory networks on quantum circuits. In: 2022 13th Asian Control Conference (ASCC), pp. 2360–2366 (2022)
Lloyd, S., Schuld, M., Ijaz, A., Izaac, J., Killoran, N.: Quantum embeddings for machine learning. arXiv preprint arXiv:2001.03622 (2020)
Wille, R., Van Meter, R., Naveh, Y. IBM’s Qiskit tool chain: working with and developing for real quantum computers. In: 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1234–1240. IEEE (2019)
Koldijk, S., Sappelli, M., Verberne, S., Neerincx, M.A., Kraaij, W.: The swell knowledge work dataset for stress and user modeling research. In:Proceedings of the 16th International Conference on Multimodal Interaction, pp. 291–298 (2014)
Schmidt, P., Reiss, A., Duerichen, R., Marberger, C., Van Laerhoven, K.: Introducing Wesad, a multimodal dataset for wearable stress and affect detection. In: Proceedings of the 20th ACM International Conference on Multimodal Interaction, pp. 400–408 (2018)
Jakobsen, P., Garcia-Ceja, E., Stabell, L.A., Oedegaard, K.J., Berle, J.O., Thambawita, V., Riegler, M.A.: Psykose: A motor activity database of patients with schizophrenia. In: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), pp. 303–308. IEEE (2020)
Acknowledgements
Not applicable
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
AP developed the model and prepared the manuscript. AS designed the model and analysed the result.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there are no competing interests.
Consent for publication
We give our consent for the publication of the manuscript.
Human and animal rights
This work does not involve human participants and presents no ethical concerns.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Padha, A., Sahoo, A. Quantum deep neural networks for time series analysis. Quantum Inf Process 23, 205 (2024). https://doi.org/10.1007/s11128-024-04404-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04404-y