Skip to main content
Log in

Analysis of multi-photon quantum radar cross section for targets in atmospheric medium

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Extensive studies have been carried out on the characteristics of quantum radar cross section (QRCS) of targets. However, one crucial question related to multi-photon quantum radar cross section (M-QRCS) for targets in the atmospheric medium has not been explored yet. Understanding this question is vital for target detection and identification of quantum radar. This paper presents a universal method to solve M-QRCS in a homogeneous atmospheric medium (HAM-QRCS). The process is based on the photon wave function in a homogeneous atmospheric medium and the interaction mechanism of multi-photon and multiple atoms. It is suitable for analyzing the HAM-QRCS characteristics of targets of arbitrary shapes. The simulation results show that the molecules, particles, and other factors in the atmospheric medium cause the signal photons’ energy to decrease and the propagation direction to change, leading to a decrease in the target return responses. However, in a specific angle range, as the photon number increases, the main lobe and first side lobe structures of the bistatic HAM-QRCS response are enhanced. These findings can be utilized to design target detection strategies and optimize stealth target structures of the quantum radar in the atmospheric medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Farquharson, J.: Instruments of Darkness: The History of Electronic Warfare, 1939–1945. Pen and Sword, Barnsley (2007)

    Google Scholar 

  2. Lloyd, S.: Enhanced sensitivity of photodetection via quantum illumination. Science 321(5895), 1463–1465 (2008)

    Article  ADS  Google Scholar 

  3. Pirandola, S., Bardhan, B.R., Gehring, T., Weedbrook, C., Lloyd, S.: Advances in photonic quantum sensing. Nat. Photonics 12(12), 724–733 (2018)

    Article  ADS  Google Scholar 

  4. Jiang, K., Lee, H., Gerry, C.C., Dowling, J.P.: Super-resolving quantum radar: coherent-state sources with homodyne detection suffice to beat the diffraction limit. J. Appl. Phys. 114(19), 193102 (2013)

    Article  ADS  Google Scholar 

  5. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306(5700), 1330–1336 (2004)

    Article  ADS  Google Scholar 

  6. Gallego Torromé, R., Barzanjeh, S.: Advances in quantum radar and quantum lidar. Prog. Quantum Electron. 93, 100497 (2023)

    Article  Google Scholar 

  7. Assouly, R., Dassonneville, R., Peronnin, T., Bienfait, A., Huard, B.: Quantum advantage in microwave quantum radar. Nat. Phys. 19(10), 1418–1422 (2023)

    Article  Google Scholar 

  8. Maccone, L., Ren, C.: Quantum radar. Phys. Rev. Lett. 124(20), 200503 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  9. Titum, P., Schultz, K., Seif, A., Quiroz, G., Clader, B.: Optimal control for quantum detectors. npj Quantum Inf. 7(1), 53 (2021)

    Article  ADS  Google Scholar 

  10. Luong, D., Damini, A., Balaji, B., Chang, C.S., Vadiraj, A., Wilson, C.: A quantum-enhanced radar prototype. In: 2019 IEEE Radar Conference (RadarConf), pp. 1–6. IEEE (2019)

  11. Chang, C.W.S., Vadiraj, A.M., Bourassa, J., Balaji, B., Wilson, C.M.: Quantum-enhanced noise radar. Appl. Phys. Lett. 114(11), 112601 (2020)

    Article  ADS  Google Scholar 

  12. Barzanjeh, S., Guha, S., Weedbrook, C., Vitali, D., Shapiro, J.H., Pirandola, S.: Microwave quantum illumination. Phys. Rev. Lett. 114(8), 080503–080503 (2015)

    Article  ADS  Google Scholar 

  13. Barzanjeh, S., Pirandola, S., Vitali, D., Fink, J.M.: Microwave quantum illumination using a digital receiver. Sci. Adv. 6(19), 0451 (2020)

    Article  ADS  Google Scholar 

  14. Shapiro, J.H.: The quantum illumination story. IEEE Aerosp. Electron. Syst. Mag. 35(4), 8–20 (2020)

    Article  Google Scholar 

  15. Lanzagorta, M.: Quantum radar cross sections, vol. 7727, pp. 77270–7727016. SPIE, Bellingham, Wash (2010)

  16. Lanzagorta, M.: Quantum Radar, vol. 5. Morgan & Claypool Publishers, San Rafael (2012)

    Book  Google Scholar 

  17. Lanzagorta, M., Venegas-Andraca, S.: Algorithmic analysis of quantum radar cross sections. In: Radar Sensor Technology XIX; and Active and Passive Signatures VI, vol. 9461, pp. 338–345. SPIE (2015)

  18. You, C., Nellikka, A.C., De Leon, I., Magaña-Loaiza, O.S.: Multiparticle quantum plasmonics. Nanophotonics 9(6), 1243–1269 (2020)

    Article  Google Scholar 

  19. Anaya-Contreras, J.A., Zúñiga-Segundo, A., Perez-Leija, A., León-Montiel, R.D.J., Moya-Cessa, H.M.: Multiphoton processes via conditional measurements in the two-field interaction. J. Opt. 23(9), 95201 (2021)

    Article  Google Scholar 

  20. Liu, K., Xiao, H.-T., Fan, H.-Q.: Analysis and simulation of quantum radar cross section. Chin. Phys. Lett. 31(3), 62–64 (2014)

    Article  Google Scholar 

  21. Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Theoretical and computational analysis of the quantum radar cross section for simple geometrical targets. Quantum Inf. Process. 16(1), 1–27 (2017)

    Article  MathSciNet  Google Scholar 

  22. Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Electric and magnetic target polarization in quantum radar. In: Radar Sensor Technology XXI, vol. 10188, pp. 108–117. SPIE (2017)

  23. Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Analytical formulation of the quantum electromagnetic cross section. In: Radar Sensor Technology XX, vol. 9829, pp. 448–455. SPIE (2016)

  24. Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: The effect of polarization on the quantum radar cross section response. IEEE J. Quantum Electron. 53(2), 1–9 (2017)

    Article  Google Scholar 

  25. Hu, J., Li, H., Xia, C.: Calculation and analysis of quantum radar scattering characteristics of targets in atmospheric medium. Opt. Express 31(6), 9171–9185 (2023)

    Article  ADS  Google Scholar 

  26. Salmanogli, A., Gokcen, D.: Analysis of quantum radar cross-section by canonical quantization method (full quantum theory). IEEE Access 8, 205487–205494 (2020)

    Article  Google Scholar 

  27. Fang, C.: The closed-form expressions for the bistatic quantum radar cross section of the typical simple plates. IEEE Sens. J. 20(5), 2348–2355 (2020)

    Article  ADS  Google Scholar 

  28. Fang, C., Tan, H., Liu, Q.-F., Tao, L., Xiao, L., Chen, Y., Hua, L.: The calculation and analysis of the bistatic quantum radar cross section for the typical 2-d plate. IEEE Photonics J. 10(2), 1–14 (2018)

    Article  Google Scholar 

  29. Fang, C.: The analysis of mainlobe-slumping quantum effect of the cube in the scattering characteristics of quantum radar. IEEE Access 7, 141055–141061 (2019)

    Article  Google Scholar 

  30. Tian, Z., Wu, D., Hu, T.: Closed-form expressions and analysis for the slumping effect of a cuboid in the scattering characteristics of quantum radar. Opt. Express 29(21), 34077–34084 (2021)

    Article  ADS  Google Scholar 

  31. Fang, C.: The simulation and analysis of quantum radar cross section for three-dimensional convex targets. IEEE Photonics J. 10(1), 1–8 (2018)

    Google Scholar 

  32. Tian, Z., Wu, D., Hu, T.: Analysis of quantum radar cross-section of dihedral corner reflector. IEEE Photonics Technol. Lett. 33(22), 1250–1253 (2021)

    Article  ADS  Google Scholar 

  33. Tian, Z., Wu, D., Hu, T.: Fourier expression of the quantum radar cross section of a dihedral corner reflector. IEEE Photonics J. 13(4), 1–6 (2021)

    Article  Google Scholar 

  34. Liu, K., Xiao, H., Fan, H., Fu, Q.: Analysis of quantum radar cross section and its influence on target detection performance. IEEE Photonics Technol. Lett. 26(11), 1146–1149 (2014)

    Article  ADS  Google Scholar 

  35. Tian, Z., Wu, D., Hu, T.: Theoretical study of single-photon quantum radar cross-section of cylindrical curved surface. Acta Phys. Sin. 71(3), 142–147 (2022)

    Article  Google Scholar 

  36. Zhang, T., Zeng, H., Chen, R.: Simulation of quantum radar cross section for electrically large targets with GPU. IEEE Access 7, 154260–154267 (2019)

    Article  Google Scholar 

  37. Lanzagorta, M.: Amplification of radar and lidar signatures using quantum sensors. Active Passive Signat. 8734, 83–93 (2013)

    Google Scholar 

  38. Tian, Z., Wu, D., Xu, Y., Zhou, X., Zhang, Y., Hu, T.: Closed-form model and analysis for the enhancement effect of a rectangular plate in the scattering characteristics of multiphoton quantum radar. Opt. Express 30(12), 20203–20212 (2022)

    Article  ADS  Google Scholar 

  39. Hu, J., Li, H., Xia, C.: The analysis of convergence of the bistatic multiphoton quantum radar cross section. Quantum Inf. Process. 22(10), 370 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  40. Tian, Z., Hu, T., Wu, D., Wang, S., Zhang, Y.: Analysis of quantum scattering characteristics for a cone illuminated with multiphoton in the remote sensing scene. Results Phys. 44, 106138 (2023)

    Article  Google Scholar 

  41. Greiner, W., Reinhardt, J.: Quantum Electrodynamics. Springer, Berlin (2009)

    Google Scholar 

  42. Garrison, J.C., Chiao, R.Y.: Quantum Optics. Oxford University Press, New York (2008)

    Book  Google Scholar 

  43. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Jie Hu: Conceptualization, Methodology, Data Curation, Experiment, and wrote the main manuscript text. Huifang Li: Supervision. Chenyang Xia: Methodology. Zhaoqiang Xia: Validation. All authors reviewed the manuscript.

Corresponding author

Correspondence to Huifang Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Li, H., Xia, C. et al. Analysis of multi-photon quantum radar cross section for targets in atmospheric medium. Quantum Inf Process 23, 207 (2024). https://doi.org/10.1007/s11128-024-04410-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04410-0

Keywords