Abstract
Extensive studies have been carried out on the characteristics of quantum radar cross section (QRCS) of targets. However, one crucial question related to multi-photon quantum radar cross section (M-QRCS) for targets in the atmospheric medium has not been explored yet. Understanding this question is vital for target detection and identification of quantum radar. This paper presents a universal method to solve M-QRCS in a homogeneous atmospheric medium (HAM-QRCS). The process is based on the photon wave function in a homogeneous atmospheric medium and the interaction mechanism of multi-photon and multiple atoms. It is suitable for analyzing the HAM-QRCS characteristics of targets of arbitrary shapes. The simulation results show that the molecules, particles, and other factors in the atmospheric medium cause the signal photons’ energy to decrease and the propagation direction to change, leading to a decrease in the target return responses. However, in a specific angle range, as the photon number increases, the main lobe and first side lobe structures of the bistatic HAM-QRCS response are enhanced. These findings can be utilized to design target detection strategies and optimize stealth target structures of the quantum radar in the atmospheric medium.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
Farquharson, J.: Instruments of Darkness: The History of Electronic Warfare, 1939–1945. Pen and Sword, Barnsley (2007)
Lloyd, S.: Enhanced sensitivity of photodetection via quantum illumination. Science 321(5895), 1463–1465 (2008)
Pirandola, S., Bardhan, B.R., Gehring, T., Weedbrook, C., Lloyd, S.: Advances in photonic quantum sensing. Nat. Photonics 12(12), 724–733 (2018)
Jiang, K., Lee, H., Gerry, C.C., Dowling, J.P.: Super-resolving quantum radar: coherent-state sources with homodyne detection suffice to beat the diffraction limit. J. Appl. Phys. 114(19), 193102 (2013)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306(5700), 1330–1336 (2004)
Gallego Torromé, R., Barzanjeh, S.: Advances in quantum radar and quantum lidar. Prog. Quantum Electron. 93, 100497 (2023)
Assouly, R., Dassonneville, R., Peronnin, T., Bienfait, A., Huard, B.: Quantum advantage in microwave quantum radar. Nat. Phys. 19(10), 1418–1422 (2023)
Maccone, L., Ren, C.: Quantum radar. Phys. Rev. Lett. 124(20), 200503 (2020)
Titum, P., Schultz, K., Seif, A., Quiroz, G., Clader, B.: Optimal control for quantum detectors. npj Quantum Inf. 7(1), 53 (2021)
Luong, D., Damini, A., Balaji, B., Chang, C.S., Vadiraj, A., Wilson, C.: A quantum-enhanced radar prototype. In: 2019 IEEE Radar Conference (RadarConf), pp. 1–6. IEEE (2019)
Chang, C.W.S., Vadiraj, A.M., Bourassa, J., Balaji, B., Wilson, C.M.: Quantum-enhanced noise radar. Appl. Phys. Lett. 114(11), 112601 (2020)
Barzanjeh, S., Guha, S., Weedbrook, C., Vitali, D., Shapiro, J.H., Pirandola, S.: Microwave quantum illumination. Phys. Rev. Lett. 114(8), 080503–080503 (2015)
Barzanjeh, S., Pirandola, S., Vitali, D., Fink, J.M.: Microwave quantum illumination using a digital receiver. Sci. Adv. 6(19), 0451 (2020)
Shapiro, J.H.: The quantum illumination story. IEEE Aerosp. Electron. Syst. Mag. 35(4), 8–20 (2020)
Lanzagorta, M.: Quantum radar cross sections, vol. 7727, pp. 77270–7727016. SPIE, Bellingham, Wash (2010)
Lanzagorta, M.: Quantum Radar, vol. 5. Morgan & Claypool Publishers, San Rafael (2012)
Lanzagorta, M., Venegas-Andraca, S.: Algorithmic analysis of quantum radar cross sections. In: Radar Sensor Technology XIX; and Active and Passive Signatures VI, vol. 9461, pp. 338–345. SPIE (2015)
You, C., Nellikka, A.C., De Leon, I., Magaña-Loaiza, O.S.: Multiparticle quantum plasmonics. Nanophotonics 9(6), 1243–1269 (2020)
Anaya-Contreras, J.A., Zúñiga-Segundo, A., Perez-Leija, A., León-Montiel, R.D.J., Moya-Cessa, H.M.: Multiphoton processes via conditional measurements in the two-field interaction. J. Opt. 23(9), 95201 (2021)
Liu, K., Xiao, H.-T., Fan, H.-Q.: Analysis and simulation of quantum radar cross section. Chin. Phys. Lett. 31(3), 62–64 (2014)
Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Theoretical and computational analysis of the quantum radar cross section for simple geometrical targets. Quantum Inf. Process. 16(1), 1–27 (2017)
Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Electric and magnetic target polarization in quantum radar. In: Radar Sensor Technology XXI, vol. 10188, pp. 108–117. SPIE (2017)
Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Analytical formulation of the quantum electromagnetic cross section. In: Radar Sensor Technology XX, vol. 9829, pp. 448–455. SPIE (2016)
Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: The effect of polarization on the quantum radar cross section response. IEEE J. Quantum Electron. 53(2), 1–9 (2017)
Hu, J., Li, H., Xia, C.: Calculation and analysis of quantum radar scattering characteristics of targets in atmospheric medium. Opt. Express 31(6), 9171–9185 (2023)
Salmanogli, A., Gokcen, D.: Analysis of quantum radar cross-section by canonical quantization method (full quantum theory). IEEE Access 8, 205487–205494 (2020)
Fang, C.: The closed-form expressions for the bistatic quantum radar cross section of the typical simple plates. IEEE Sens. J. 20(5), 2348–2355 (2020)
Fang, C., Tan, H., Liu, Q.-F., Tao, L., Xiao, L., Chen, Y., Hua, L.: The calculation and analysis of the bistatic quantum radar cross section for the typical 2-d plate. IEEE Photonics J. 10(2), 1–14 (2018)
Fang, C.: The analysis of mainlobe-slumping quantum effect of the cube in the scattering characteristics of quantum radar. IEEE Access 7, 141055–141061 (2019)
Tian, Z., Wu, D., Hu, T.: Closed-form expressions and analysis for the slumping effect of a cuboid in the scattering characteristics of quantum radar. Opt. Express 29(21), 34077–34084 (2021)
Fang, C.: The simulation and analysis of quantum radar cross section for three-dimensional convex targets. IEEE Photonics J. 10(1), 1–8 (2018)
Tian, Z., Wu, D., Hu, T.: Analysis of quantum radar cross-section of dihedral corner reflector. IEEE Photonics Technol. Lett. 33(22), 1250–1253 (2021)
Tian, Z., Wu, D., Hu, T.: Fourier expression of the quantum radar cross section of a dihedral corner reflector. IEEE Photonics J. 13(4), 1–6 (2021)
Liu, K., Xiao, H., Fan, H., Fu, Q.: Analysis of quantum radar cross section and its influence on target detection performance. IEEE Photonics Technol. Lett. 26(11), 1146–1149 (2014)
Tian, Z., Wu, D., Hu, T.: Theoretical study of single-photon quantum radar cross-section of cylindrical curved surface. Acta Phys. Sin. 71(3), 142–147 (2022)
Zhang, T., Zeng, H., Chen, R.: Simulation of quantum radar cross section for electrically large targets with GPU. IEEE Access 7, 154260–154267 (2019)
Lanzagorta, M.: Amplification of radar and lidar signatures using quantum sensors. Active Passive Signat. 8734, 83–93 (2013)
Tian, Z., Wu, D., Xu, Y., Zhou, X., Zhang, Y., Hu, T.: Closed-form model and analysis for the enhancement effect of a rectangular plate in the scattering characteristics of multiphoton quantum radar. Opt. Express 30(12), 20203–20212 (2022)
Hu, J., Li, H., Xia, C.: The analysis of convergence of the bistatic multiphoton quantum radar cross section. Quantum Inf. Process. 22(10), 370 (2023)
Tian, Z., Hu, T., Wu, D., Wang, S., Zhang, Y.: Analysis of quantum scattering characteristics for a cone illuminated with multiphoton in the remote sensing scene. Results Phys. 44, 106138 (2023)
Greiner, W., Reinhardt, J.: Quantum Electrodynamics. Springer, Berlin (2009)
Garrison, J.C., Chiao, R.Y.: Quantum Optics. Oxford University Press, New York (2008)
Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (2001)
Author information
Authors and Affiliations
Contributions
Jie Hu: Conceptualization, Methodology, Data Curation, Experiment, and wrote the main manuscript text. Huifang Li: Supervision. Chenyang Xia: Methodology. Zhaoqiang Xia: Validation. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no relevant financial or non-financial interests to disclose.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hu, J., Li, H., Xia, C. et al. Analysis of multi-photon quantum radar cross section for targets in atmospheric medium. Quantum Inf Process 23, 207 (2024). https://doi.org/10.1007/s11128-024-04410-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04410-0