Abstract
Quantum computing has made many important achievements in the field of cryptanalysis. However, due to the limitations of current physical system and technology, the realization of large-scale universal quantum computers is a long way off. Currently, small-scale quantum computers are easier to implement than large-scale universal quantum computers. Distributed quantum computing proposes an implementation architecture, which attempts to break down large-scale tasks into many sub-tasks distributed across multiple small-scale quantum computers. How to use small-scale quantum computers with fewer qubits and shallower quantum depths to complete large-scale tasks and improve the success rate of attacking symmetric cryptosystems is our concern. In this paper, we propose a distributed exact Simon’s algorithm, apply it to achieve quantum key recovery attacks on single-permutation-based pseudorandom cryptographic schemes with classical birthday bound security, and estimate the quantum resources of quantum circuits. Furthermore, we combine distributed exact Grover’s algorithm and distributed exact Simon’s algorithm to achieve quantum key recovery attacks on two-permutation-based pseudorandom cryptographic schemes with classical beyond birthday bound security and estimate the corresponding quantum resources. Our results show that (1) our algorithms are exact which means that the theoretical success probability of attacking pseudorandom cryptographic schemes is 100%; (2) the depth of circuit is in polynomial time which means that the theoretical depth of attacking symmetric cryptosystems is exponentially accelerated relative to the previous results; (3) the qubits of circuit don’t increase significantly. Our work is of great importance. It could lead to the rapid realization of effective quantum attacks against symmetric cryptosystems on small-scale quantum computers.








































Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The data used to support the findings of the study are available within the article.
References
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997). https://doi.org/10.1137/S0097539795293172
Collins, D., Kim, K., Holton, W.: Deutsch–Jozsa algorithm as a test of quantum computation. Phys. Rev. A 58(3), 1633 (1998). https://doi.org/10.1103/PhysRevA.58.R1633
Xie, H., Yang, L.: Using Bernstein–Vazirani algorithm to attack block ciphers. Des. Codes Cryptogr. 87(5), 1161–1182 (2019). https://doi.org/10.1007/s10623-018-0510-5
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller, G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM symposium on the theory of computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pp. 212–219. ACM, New York (1996). https://doi.org/10.1145/237814.237866
Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997). https://doi.org/10.1137/S0097539796298637
Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009). https://doi.org/10.1103/PhysRevLett.103.150502
Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005). https://doi.org/10.1137/S0097539703436345
Wang, Z., Hadfield, S., Jiang, Z., Rieffel, E.G.: Quantum approximate optimization algorithm for maxcut: a fermionic view. Phys. Rev. A 97(2), 022304 (2018). https://doi.org/10.1103/PhysRevA.97.022304
Weinstein, Y.S., Pravia, M., Fortunato, E., Lloyd, S., Cory, D.G.: Implementation of the quantum Fourier transform. Phys. Rev. Lett. 86(9), 1889 (2001). https://doi.org/10.1103/PhysRevLett.86.1889
Kadian, K., Garhwal, S., Kumar, A.: Quantum walk and its application domains: a systematic review. Comput. Sci. Rev. 41, 100419 (2021). https://doi.org/10.1016/j.cosrev.2021.100419
Leander, G., May, A.: Grover meets simon - quantumly attacking the fx-construction. In: Takagi, T., Peyrin, T. (eds.) Advances in vryptology—ASIACRYPT 2017—23rd international conference on the theory and applications of cryptology and information security, Hong Kong, China, December 3–7, 2017, proceedings, Part II. Lecture notes in computer science, vol. 10625, pp. 161–178. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-70697-9_6
Zhou, B., Yuan, Z.: Quantum key-recovery attack on Feistel constructions: Bernstein–Vazirani meet grover algorithm. Quantum Inf. Process. 20(10), 330 (2021). https://doi.org/10.1007/s11128-021-03256-0
Li, H., Qiu, D., Luo, L.: Distributed Deutsch–Jozsa algorithm. Available at SSRN 4698889
Qiu, D., Luo, L., Xiao, L.: Distributed Grover’s algorithm. Theoret. Comput. Sci. (2024). https://doi.org/10.1016/j.tcs.2024.114461
Tan, J., Xiao, L., Qiu, D., Luo, L., Mateus, P.: Distributed quantum algorithm for Simon’s problem. Phys. Rev. A 106(3), 032417 (2022). https://doi.org/10.1103/PhysRevA.106.032417
Zhou, X., Qiu, D., Luo, L.: Distributed Bernstein–Vazirani algorithm. Physica A 629, 129209 (2023). https://doi.org/10.1016/j.physa.2023.129209
Zhou, X., Qiu, D., Luo, L.: Distributed exact grover’s algorithm. Front. Phys. 18(5), 51305 (2023). https://doi.org/10.1007/s11467-023-1327-x
Li, H., Qiu, D., Luo, L.: Distributed exact quantum algorithms for deutsch-jozsa problem. arXiv:2303.10663 (2023). https://doi.org/10.48550/arXiv.2303.10663
Li, H., Qiu, D., Luo, L., Paulo, M.: Exact distributed quantum algorithm for generalized simon’s problem. arXiv:2307.14315 (2023). https://doi.org/10.48550/arXiv.2307.14315
Long, G.-L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64(2), 022307 (2001). https://doi.org/10.1103/PhysRevA.64.022307
Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002)
Guo, T., Wang, P., Hu, L., Ye, D.: Attacks on beyond-birthday-bound macs in the quantum setting. In: Cheon, J.H., Tillich, J. (eds.) Post-quantum cryptography—12th international workshop, PQCrypto 2021, Daejeon, South Korea, July 20-22, 2021, Proceedings. lecture notes in computer science, vol. 12841, pp. 421–441. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-81293-5_22
Malviya, A.K., Tiwari, N., Chawla, M.: Quantum cryptanalytic attacks of symmetric ciphers: a review. Comput. Electr. Eng. 101, 108122 (2022). https://doi.org/10.1016/j.compeleceng.2022.108122
Hosoyamada, A., Aoki, K.: On quantum related-key attacks on iterated even-mansour ciphers. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 102(1), 27–34 (2019). https://doi.org/10.1587/transfun.E102.A.27
Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology—CRYPTO 2016—36th annual international cryptology conference, Santa Barbara, CA, USA, August 14-18, 2016, proceedings, Part II. lecture notes in computer science, vol. 9815, pp. 207–237. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_8
Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom permutation. J. Cryptol. 10(3), 151–162 (1997). https://doi.org/10.1007/s001459900025
Cogliati, B., Lampe, R., Seurin, Y.: Tweaking even-mansour ciphers. In: Gennaro, R., Robshaw, M. (eds.) Advances in cryptology—CRYPTO 2015—35th annual cryptology conference, Santa Barbara, CA, USA, August 16-20, 2015, proceedings, Part I. Lecture notes in computer science, vol. 9215, pp. 189–208. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_9
Cogliati, B., Seurin, Y.: Analysis of the single-permutation encrypted Davies–Meyer construction. Des. Codes Cryptogr. 86(12), 2703–2723 (2018). https://doi.org/10.1007/S10623-018-0470-9
Zou, J., Wei, Z., Sun, S., Liu, X., Wu, W.: Quantum circuit implementations of AES with fewer qubits. In: Moriai, S., Wang, H. (eds.) Advances in Cryptology—ASIACRYPT 2020—26th international conference on the theory and application of cryptology and information security, Daejeon, South Korea, December 7-11, 2020, proceedings, Part II. Lecture notes in computer science, vol. 12492, pp. 697–726. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-64834-3_24
Cai, B., Gao, F., Leander, G.: Quantum attacks on two-round even-mansour. Front. Phys. 10, 1028014 (2022). https://doi.org/10.3389/fphy.2022.1028014/full
Cho, S., Kim, A., Choi, D., Choi, B., Seo, S.: Quantum modular multiplication. IEEE Access 8, 213244–213252 (2020). https://doi.org/10.1109/ACCESS.2020.3039167
Chen, Y.L., Lambooij, E., Mennink, B.: How to build pseudorandom functions from public random permutations. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology—CRYPTO 2019—39th annual international cryptology conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11692, pp. 266–293. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-26948-7_10
Chen, S., Lampe, R., Lee, J., Seurin, Y., Steinberger, J.P.: Minimizing the two-round even-mansour cipher. J. Cryptol. 31(4), 1064–1119 (2018). https://doi.org/10.1007/S00145-018-9295-Y
Dutta, A., Nandi, M., Talnikar, S.: Permutation based EDM: an inverse free BBB secure PRF. IACR Trans. Symmetric Cryptol. 2021(2), 31–70 (2021). https://doi.org/10.1016/j.ipl.2021.106172
Shinagawa, K., Iwata, T.: Quantum attacks on sum of even-mansour pseudorandom functions. Inf. Process. Lett. 173, 106172 (2022). https://doi.org/10.1016/j.ipl.2021.106172
Acknowledgements
We would like to express our sincere thanks to editors and the anonymous reviewers for the valuable comments and suggestions.
Funding
This work was supported by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province (Grant No.: SKLACSS-202315), National Natural Science Foundation of China (Grant Nos.: 62072207, U23B2002, 62272238, and 61902195), Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515140090), and NUPTSF (Grant No.: NY219131).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no Conflict of interest to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, P., Luo, Y. Breaking permutation-based pseudorandom cryptographic schemes using distributed exact quantum algorithms. Quantum Inf Process 23, 239 (2024). https://doi.org/10.1007/s11128-024-04424-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04424-8