Abstract
This work introduces the use of a variational quantum circuit in order to perform unitary decomposition of a quantum operator. By use of classical optimization techniques and exploiting correlations and entanglement, the variational quantum circuit is able to translate a wide range of quantum algorithms, including the Toffoli gate and random unitary. A case study is also presented, where this decomposition is used to decompose a unitary matrix arise from a classification task.















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The datasets generated during and/or analyzed during the current study are available in the UCI machine learning repository, http://archive.ics.uci.edu/ml from University of California, Irvine, School of Information and Computer Sciences.
Notes
The decomposition does not directly address the classification problem; instead, it decompose a matrix derived from a classical pre-analysis.
References
Arute, F., Arya, K., Babbush, R., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019). https://doi.org/10.1038/s41586-019-1666-5
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. STOC ’96, pp. 212–219. Association for Computing Machinery, New York, NY, USA (1996). https://doi.org/10.1145/237814.237866
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997). https://doi.org/10.1137/S0097539795293172.
Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78, 405–408 (1997). https://doi.org/10.1103/PhysRevLett.78.405
Krol, A.M., Sarkar, A., Ashraf, I., Al-Ars, Z., Bertels, K.: Efficient decomposition of unitary matrices in quantum circuit compilers. Appl. Sci. (2022). https://doi.org/10.3390/app12020759
Tucci, R.R.: An Introduction to Cartan’s KAK Decomposition for QC Programmers (2005)
Sutton, B.D.: Computing the complete CS decomposition. Numer. Algorithms 50, 33–65 (2009). https://doi.org/10.1007/s11075-008-9215-6
Bang, J., Yoo, S.: A genetic-algorithm-based method to find unitary transformations for any desired quantum computation and application to a one-bit oracle decision problem. J. Korean Phys. Soc. 65, 2001 (2015). https://doi.org/10.3938/jkps.65.2001
Huang, Y.-M., Li, X.-Y., Zhu, Y.-X., Lei, H., Zhu, Q.-S., Yang, S.: Learning unitary transformation by quantum machine learning model. Comput. Mater. Contin. 68(1), 789–803 (2021). https://doi.org/10.32604/cmc.2021.016663
Bai, Z., Ng, M., Qi, L.: A coordinate gradient descent method for nonsmooth nonseparable minimization. Numer. Math. Theor. Methods Appl. 2, 377–402 (2009). https://doi.org/10.4208/nmtma.2009.m9002s
IBM Quantum (2023). https://quantum-computing.ibm.com/,2021
Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. Am. J. Phys. 70(5), 558–559 (2002). https://doi.org/10.1119/1.1463744
de Oliveira, A.L.F., Buksman, E., de Lacalle, J.G.L.: Cumulative measure of correlation for multipartite quantum states. Int. J. Mod. Phys. B 28(07), 1450050 (2014). https://doi.org/10.1142/S0217979214500507
Shende, V., Markov, I.: On the CNOT-cost of Toffoli gates. Quantum Inf. Comput. 9, 256 (2008). https://doi.org/10.26421/QIC8.5-6-8
Dua, D., Graff, C.: UCI Machine Learning Repository (2017). http://archive.ics.uci.edu/ml
Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(6), 1000–1010 (2006). https://doi.org/10.1109/TCAD.2005.855930
Möttönen, M., Vartiainen, J.J.: Decompositions of General Quantum Gates. Nova Science Pub Inc, Hauppauge (2006). arXiv:quant-ph/0504100
GoubaultdeBrugière, T., Baboulin, M., Valiron, B., Allouche, C.: Quantum circuits synthesis using householder transformations. Comput. Phys. Commun. 248, 107001 (2020). https://doi.org/10.1016/j.cpc.2019.107001
Ruican, C., Udrescu, M., Prodan, L., Vladutiu, M.: Automatic synthesis for quantum circuits using genetic algorithms. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) Adaptive and Natural Computing Algorithms, pp. 174–183. Springer, Berlin (2007)
Mukherjee, D., Chakrabarti, A., Bhattacharjee, D., Choudhury, A.: Synthesis of quantum circuits using genetic algorithm. Int. J. Recent Trends Eng. 2 (2009)
Daskin, A., Kais, S.: Decomposition of unitary matrices for finding quantum circuits: application to molecular Hamiltonians. J. Chem. Phys. 134(14), 144112 (2011). https://doi.org/10.1063/1.3575402
Miranda, F.T., Balbi, P.P., Costa, P.C.S.: Synthesis of Quantum Circuits with an Island Genetic Algorithm (2023)
Ashhab, S., Yoshihara, F., Tsuji, M., Sato, M., Semba, K.: Quantum circuit synthesis via random combinatorial search (2023)
Arrazola, J.M., Bromley, T.R., Izaac, J., Myers, C.R., Brádler, K., Killoran, N.: Machine learning method for state preparation and gate synthesis on photonic quantum computers. Quantum Sci. Technol. 4(2), 024004 (2019). https://doi.org/10.1088/2058-9565/aaf59e
Weiden, M., Younis, E., Kalloor, J., Kubiatowicz, J., Iancu, C.: Improving quantum circuit synthesis with machine learning. In: 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 1–11. IEEE Computer Society, Los Alamitos, CA, USA (2023). https://doi.org/10.1109/QCE57702.2023.00093. https://doi.ieeecomputersociety.org/10.1109/QCE57702.2023.00093
Nemkov, N.A., Kiktenko, E.O., Luchnikov, I.A., Fedorov, A.K.: Efficient variational synthesis of quantum circuits with coherent multi-start optimization. Quantum 7, 993 (2023). https://doi.org/10.22331/q-2023-05-04-993
Acknowledgements
We acknowledge the use of IBM quantum services for this work. The views expressed are those of the authors and do not reflect the official policy or position of IBM or the IBM quantum team.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
This research has no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Allende, C., de Olivera, A.F. & Buksman, E. Synthesis of quantum circuits based on supervised learning and correlations. Quantum Inf Process 23, 204 (2024). https://doi.org/10.1007/s11128-024-04426-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04426-6