Skip to main content
Log in

Synthesis of quantum circuits based on supervised learning and correlations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This work introduces the use of a variational quantum circuit in order to perform unitary decomposition of a quantum operator. By use of classical optimization techniques and exploiting correlations and entanglement, the variational quantum circuit is able to translate a wide range of quantum algorithms, including the Toffoli gate and random unitary. A case study is also presented, where this decomposition is used to decompose a unitary matrix arise from a classification task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated during and/or analyzed during the current study are available in the UCI machine learning repository, http://archive.ics.uci.edu/ml from University of California, Irvine, School of Information and Computer Sciences.

Notes

  1. The decomposition does not directly address the classification problem; instead, it decompose a matrix derived from a classical pre-analysis.

References

  1. Arute, F., Arya, K., Babbush, R., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019). https://doi.org/10.1038/s41586-019-1666-5

    Article  ADS  Google Scholar 

  2. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. STOC ’96, pp. 212–219. Association for Computing Machinery, New York, NY, USA (1996). https://doi.org/10.1145/237814.237866

  3. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997). https://doi.org/10.1137/S0097539795293172.

    Article  MathSciNet  Google Scholar 

  4. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78, 405–408 (1997). https://doi.org/10.1103/PhysRevLett.78.405

    Article  ADS  MathSciNet  Google Scholar 

  5. Krol, A.M., Sarkar, A., Ashraf, I., Al-Ars, Z., Bertels, K.: Efficient decomposition of unitary matrices in quantum circuit compilers. Appl. Sci. (2022). https://doi.org/10.3390/app12020759

    Article  Google Scholar 

  6. Tucci, R.R.: An Introduction to Cartan’s KAK Decomposition for QC Programmers (2005)

  7. Sutton, B.D.: Computing the complete CS decomposition. Numer. Algorithms 50, 33–65 (2009). https://doi.org/10.1007/s11075-008-9215-6

    Article  ADS  MathSciNet  Google Scholar 

  8. Bang, J., Yoo, S.: A genetic-algorithm-based method to find unitary transformations for any desired quantum computation and application to a one-bit oracle decision problem. J. Korean Phys. Soc. 65, 2001 (2015). https://doi.org/10.3938/jkps.65.2001

    Article  Google Scholar 

  9. Huang, Y.-M., Li, X.-Y., Zhu, Y.-X., Lei, H., Zhu, Q.-S., Yang, S.: Learning unitary transformation by quantum machine learning model. Comput. Mater. Contin. 68(1), 789–803 (2021). https://doi.org/10.32604/cmc.2021.016663

    Article  Google Scholar 

  10. Bai, Z., Ng, M., Qi, L.: A coordinate gradient descent method for nonsmooth nonseparable minimization. Numer. Math. Theor. Methods Appl. 2, 377–402 (2009). https://doi.org/10.4208/nmtma.2009.m9002s

    Article  MathSciNet  Google Scholar 

  11. IBM Quantum (2023). https://quantum-computing.ibm.com/,2021

  12. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. Am. J. Phys. 70(5), 558–559 (2002). https://doi.org/10.1119/1.1463744

    Article  ADS  Google Scholar 

  13. de Oliveira, A.L.F., Buksman, E., de Lacalle, J.G.L.: Cumulative measure of correlation for multipartite quantum states. Int. J. Mod. Phys. B 28(07), 1450050 (2014). https://doi.org/10.1142/S0217979214500507

    Article  MathSciNet  Google Scholar 

  14. Shende, V., Markov, I.: On the CNOT-cost of Toffoli gates. Quantum Inf. Comput. 9, 256 (2008). https://doi.org/10.26421/QIC8.5-6-8

    Article  MathSciNet  Google Scholar 

  15. Dua, D., Graff, C.: UCI Machine Learning Repository (2017). http://archive.ics.uci.edu/ml

  16. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(6), 1000–1010 (2006). https://doi.org/10.1109/TCAD.2005.855930

    Article  Google Scholar 

  17. Möttönen, M., Vartiainen, J.J.: Decompositions of General Quantum Gates. Nova Science Pub Inc, Hauppauge (2006). arXiv:quant-ph/0504100

  18. GoubaultdeBrugière, T., Baboulin, M., Valiron, B., Allouche, C.: Quantum circuits synthesis using householder transformations. Comput. Phys. Commun. 248, 107001 (2020). https://doi.org/10.1016/j.cpc.2019.107001

    Article  MathSciNet  Google Scholar 

  19. Ruican, C., Udrescu, M., Prodan, L., Vladutiu, M.: Automatic synthesis for quantum circuits using genetic algorithms. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) Adaptive and Natural Computing Algorithms, pp. 174–183. Springer, Berlin (2007)

    Chapter  Google Scholar 

  20. Mukherjee, D., Chakrabarti, A., Bhattacharjee, D., Choudhury, A.: Synthesis of quantum circuits using genetic algorithm. Int. J. Recent Trends Eng. 2 (2009)

  21. Daskin, A., Kais, S.: Decomposition of unitary matrices for finding quantum circuits: application to molecular Hamiltonians. J. Chem. Phys. 134(14), 144112 (2011). https://doi.org/10.1063/1.3575402

    Article  ADS  Google Scholar 

  22. Miranda, F.T., Balbi, P.P., Costa, P.C.S.: Synthesis of Quantum Circuits with an Island Genetic Algorithm (2023)

  23. Ashhab, S., Yoshihara, F., Tsuji, M., Sato, M., Semba, K.: Quantum circuit synthesis via random combinatorial search (2023)

  24. Arrazola, J.M., Bromley, T.R., Izaac, J., Myers, C.R., Brádler, K., Killoran, N.: Machine learning method for state preparation and gate synthesis on photonic quantum computers. Quantum Sci. Technol. 4(2), 024004 (2019). https://doi.org/10.1088/2058-9565/aaf59e

    Article  ADS  Google Scholar 

  25. Weiden, M., Younis, E., Kalloor, J., Kubiatowicz, J., Iancu, C.: Improving quantum circuit synthesis with machine learning. In: 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 1–11. IEEE Computer Society, Los Alamitos, CA, USA (2023). https://doi.org/10.1109/QCE57702.2023.00093. https://doi.ieeecomputersociety.org/10.1109/QCE57702.2023.00093

  26. Nemkov, N.A., Kiktenko, E.O., Luchnikov, I.A., Fedorov, A.K.: Efficient variational synthesis of quantum circuits with coherent multi-start optimization. Quantum 7, 993 (2023). https://doi.org/10.22331/q-2023-05-04-993

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the use of IBM quantum services for this work. The views expressed are those of the authors and do not reflect the official policy or position of IBM or the IBM quantum team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efrain Buksman.

Ethics declarations

Conflict of interest

This research has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allende, C., de Olivera, A.F. & Buksman, E. Synthesis of quantum circuits based on supervised learning and correlations. Quantum Inf Process 23, 204 (2024). https://doi.org/10.1007/s11128-024-04426-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04426-6

Keywords