Skip to main content

Advertisement

Log in

Quantum generalized least squares method in system identification

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The least squares method—usually used to estimate different parameters—also leads to solving the equation \(A_{n \times n} \,\theta_{n \times 1} = y_{n \times 1}\) in system identification. The classical method (i.e., Cholesky decomposition) which is generally used to solve this problem has a computational complexity of \(O\left( {n^{3} } \right)\). As we know, a greater number of samples yields better system modeling. With a larger input data, the computational complexity increases significantly. That is the case with Generalized Least Squares error identification (GLS method) as well. The proposed approach in this article to solve the aforementioned problem is to use quantum algorithms, which significantly reduce the computational complexity. Therefore, in this study, two methods, namely Classical Quantum GLS (C-QGLS) and Quantum GLS methods (QGLS), were proposed to ease the computational complexity. Unlike HHL, these two methods can estimate unbiased parameters despite the existence of color noise. Moreover, they can handle the issue of non-hermitian and ill-condition matrices. The complexity of C-QGLS and QGLS methods is \(O\left( {{\text{poly}}\left( n \right)\,\log n} \right)\) and \(O\left( {{\text{poly}}\,\log\, (n^{2} )} \right)\), respectively. The proposed methods showed significant superiority compared to the classical methods. Their limitations were fewer than the other Quantum Methods, and their performance was also acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Code availability

How to implement an example is explained in Sect. 4 of this article. For more details, the MATLAB and Python code is placed in the following link. Please refer to "https://github.com/sadeghkalantari/QGLS.git".

References

  1. Ding, F.: Least squares parameter estimation and multi-innovation least squares methods for linear fitting problems from noisy data. J. Comput. Appl. Math. 426, 115107 (2023). https://doi.org/10.1016/j.cam.2023.115107

    Article  MathSciNet  Google Scholar 

  2. Eykhoff, P.: Identification theory: practical implications and limitations. Measurement 2(2), 75–85 (1984). https://doi.org/10.1016/0263-2241(84)90036-8

    Article  ADS  Google Scholar 

  3. Nelles, O.: Nonlinear dynamic system identification. In: Nelles, O. (ed.) Nonlinear system identification: from classical approaches to neural networks, fuzzy models, and gaussian processes, pp. 831–891. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-47439-3_19

    Chapter  Google Scholar 

  4. Sun, R., et al.: FedMSA: a model selection and adaptation system for federated learning. Sensors (Basel) 22(19), 7244–7244 (2022). https://doi.org/10.3390/s22197244

    Article  ADS  Google Scholar 

  5. Kalantari, S., Abdollahifard, M.J.: Optimization-based multiple-point geostatistics: a sparse way. Comput. Geosci. 95, 85–98 (2016). https://doi.org/10.1016/j.cageo.2016.07.006

    Article  ADS  Google Scholar 

  6. Qubits, World scientific eBooks, pp 3–30, (2018). https://doi.org/10.1142/9789813238411_0001

  7. Kalantari, S., Madadi, A., Ramezani, M.: Reconstruction of geological images based on an adaptive spatial domain filter: an example to introduce quantum computation to geosciences. Int. J. Mining Geo-Eng. (2023). https://doi.org/10.22059/IJMGE.2023.352048.595007

    Article  Google Scholar 

  8. Rawat, B., Mehra, N., Bist, A.S., Yusup, M., Sanjaya, Y.P.A.: Quantum computing and AI: impacts & possibilities. ADI J. Recent Innov. (AJRI) 3(2), 202–207 (2022). https://doi.org/10.34306/ajri.v3i2.656

    Article  Google Scholar 

  9. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring, Proceedings 35th annual symposium on foundations of computer science, (1994). https://doi.org/10.1109/sfcs.1994.365700.

  10. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999). https://doi.org/10.1137/s0036144598347011

    Article  ADS  MathSciNet  Google Scholar 

  11. Harvey, D., van der Hoeven, J.: Integer multiplication in time O (n log n). Ann. Math. (2021). https://doi.org/10.4007/annals.2021.193.2.4

    Article  Google Scholar 

  12. Coppersmith, D.: Modifications to the number field sieve. J. Cryptol. 6(3), 169–180 (1993). https://doi.org/10.1007/bf00198464

    Article  MathSciNet  Google Scholar 

  13. Zalka, C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60(4), 2746–2751 (1999). https://doi.org/10.1103/physreva.60.2746

    Article  ADS  Google Scholar 

  14. Strubell, E.: An Introduction to Quantum Algorithms. Available: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cad3e3f789c2e3015f1d70e18c418d11fbd4fc13

  15. Zhou, S.S., Loke, T., Izaac, J.A., Wang, J.B.: Quantum Fourier transform in computational basis. Quantum Inf. Process. (2017). https://doi.org/10.1007/s11128-017-1515-0

    Article  MathSciNet  Google Scholar 

  16. Liu, Y., Zhang, S.: Fast quantum algorithms for least squares regression and statistic leverage scores. Theoret. Comput. Sci. 657, 38–47 (2017). https://doi.org/10.1016/j.tcs.2016.05.044

    Article  MathSciNet  Google Scholar 

  17. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. (2009). https://doi.org/10.1103/physrevlett.103.150502

    Article  MathSciNet  Google Scholar 

  18. Kerenidis, I., Prakash, A.: Quantum Recommendation Systems, arXiv:1603.08675 [quant-ph], (2016), Available: https://arxiv.org/abs/1603.08675

  19. Li, K., et al.: Quantum linear system algorithm for general matrices in system identification. Entropy 24(7), 893 (2022). https://doi.org/10.3390/e24070893

    Article  ADS  MathSciNet  Google Scholar 

  20. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information: 10th anniversary edition. Cambridge University Press, (2010). Accessed: 02 Apr 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=-s4DEy7o-a0C&oi=fnd&pg=PR17&dq=Nielsen

  21. Kalantari, S., Ramezani, M., Madadi, A.: Introducing a new hybrid adaptive local optimal low rank approximation method for denoising images. Int. J. Ind. Electron. Control Optimiz. 3(2), 173–185 (2020). https://doi.org/10.22111/ieco.2019.31245.1199

    Article  Google Scholar 

  22. Kalantari, S., Madadi, A., Ramezani, M., Hajati, A.: Controlling the ground particle size and ball mill load based on acoustic signal, quantum computation basis, and least squares regression, case study: lakan lead-zinc processing plant. Int. J. Ind. Electron. Control Optimiz. 6(3), 205–218 (2023). https://doi.org/10.22111/ieco.2023.45981.1488

    Article  Google Scholar 

  23. Golub, G.H., Hoffman, A., Stewart, G.W.: A generalization of the Eckart-Young-Mirsky matrix approximation theorem. Linear Algebra Appl. 88–89, 317–327 (1987). https://doi.org/10.1016/0024-3795(87)90114-5

    Article  MathSciNet  Google Scholar 

  24. Goreinov, S.A., Oseledets, I.V., Savostyanov, D.V., Tyrtyshnikov, E.E., Zamarashkin, N.L.: How to find a good submatrix. In: Olshevsky, V., Tyrtyshnikov, E. (eds.) Matrix methods: theory, algorithms and applications: dedicated to the memory of gene golub, pp. 247–256. World Scientific (2010). https://doi.org/10.1142/9789812836021_0015

    Chapter  Google Scholar 

  25. Kishore Kumar, N., Schneider, J.: Literature survey on low rank approximation of matrices. Lin. Multilinear Algebr. 65(11), 2212–2244 (2016). https://doi.org/10.1080/03081087.2016.1267104

    Article  MathSciNet  Google Scholar 

  26. Aitken, A.C.: IV.—On least squares and linear combination of observations. Proc. R. Soc. Edinb. 55, 42–48 (1936). https://doi.org/10.1017/S0370164600014346

    Article  Google Scholar 

  27. Grover, L., Rudolph, T.: Creating superpositions that correspond to efficiently integrable probability distributions, arXiv:quant-ph/0208112, (2002), Available: https://arxiv.org/abs/quant-ph/0208112

  28. Wossnig, L., Zhao, Z., Prakash, A.: Quantum linear system algorithm for dense matrices. Phys. Rev. Lett. (2018). https://doi.org/10.1103/physrevlett.120.050502

    Article  MathSciNet  Google Scholar 

  29. https://github.com/Qiskit/textbook/blob/main/notebooks/ch-applications/hhl_tutorial.ipynb

  30. Vazquez, A.C., Frisch, A., Steenken, D., Barowski, H., Hiptmair, R., Woerner, S.: Enhancing Quantum Linear System Algorithm by Richardson Extrapolation, research.ibm.com, (2020). https://research.ibm.com/publications/enhancing-quantum-linear-system-algorithm-by-richardson-extrapolation (accessed 02 Apr 2024).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ramezani.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalantari, S., Madady, A. & Ramezani, M. Quantum generalized least squares method in system identification. Quantum Inf Process 23, 235 (2024). https://doi.org/10.1007/s11128-024-04443-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04443-5

Keywords