Skip to main content

Advertisement

Log in

New asymmetric quantum codes from matrix-product codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we provide the method of constructing asymmetric quantum codes by means of the Euclidean sums of matrix-product codes over finite fields. We construct asymmetric quantum codes of length 2n by using the Euclidean sums of matrix-product codes whose constituent codes are Reed–Solomon codes, and asymmetric quantum codes of length 3n by using the Euclidean sums of matrix-product codes whose constituent codes are generated by Fourier matrices. Using these constructions, concrete examples are presented to construct new asymmetric quantum codes. In addition, our obtained asymmetric quantum codes have better parameters than the ones available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Aly, S.A.: Asymmetric quantum BCH codes. In: Proc IEEE Int Conf Comput Eng Syst, pp. 157–162 (2008)

  2. Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)

    Article  MathSciNet  Google Scholar 

  3. Blackmore, T., Norton, G.H.: Matrix-product codes over \(\mathbb{F} _q\). Appl. Algebra Eng. Commun. Comput. 12, 477–500 (2001)

    Article  Google Scholar 

  4. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  5. Chen, J.Z., Li, J.P., Lin, J.: New optimal asymmetric quantum codes derived from negacyclic codes. Int. J. Theor. Phys. 53, 72–79 (2014)

    Article  MathSciNet  Google Scholar 

  6. Chen, J., Chen, Y., Huang, Y., Feng, C.: New optimal asymmetric quantum codes and quantum convolutional codes derived from constacyclic codes. Quantum Inf. Process. 18, 40 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  7. Chen, X., Zhu, S., Kai, X.: Two classes of new optimal asymmetric quantum codes. Int. J. Theor. Phys. 57(6), 1829–1838 (2018)

    Article  MathSciNet  Google Scholar 

  8. Ezerman, M.F., Jitman, S., Ling, S.: On asymmetric quantum MDS codes. arXiv:quantph/1006.1694

  9. Edel, Y.: Some good quantum twisted codes. https://www.mathi.uniheidelberg.de/yves/Matritzen/QTBCH/QTBCHIndex.html

  10. Guenda, K., Gulliver, T.A.: Symmetaic and asymmetric quantum MDS codes. Int. J. Quantum Inf. 11(5), 1350047 (2013)

    Article  MathSciNet  Google Scholar 

  11. Hernando, F., Lally, K., Ruano, D.: Construction and decoding of matrix-product codes. Appl. Algebra Eng. Commun. Comput. 20, 497–507 (2009)

    Article  Google Scholar 

  12. Hurley, T., Hurley, D., Hurley, B.: Entanglement-assisted quantum error-correcting codes from units. arXiv:1806.10875v1

  13. Hurley, T., Hurley, D., Hurley, B.: Quantum error-correcting codes: the unit design strategy. arXiv:1805.09053v2

  14. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  15. Ioffe, L., Mezard, M.: Asymmetric quantum error-correcting codes. Phys. Rev. A 75(1–4), 032345 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. La Guardia, G.G.: New families of asymmetric quantum BCH codes. Quantum Inf. Comput. 11(3), 239–252 (2011)

    MathSciNet  Google Scholar 

  17. La Guardia, G.G.: Asymmetric quantum Reed–Solomon and generalized Reed–Solomon codes. Quantum Inf. Process. 11, 591–604 (2012)

    Article  MathSciNet  Google Scholar 

  18. Liu, J., Hu, P., Liu, X.: Application of Euclidean sums of matrix-product codes to quantum codes. Quantum Inf. Process. 22, 202 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  19. Liu, X., Hu, P.: New quantum codes from two linear codes. Quantum Inf. Process. 19, 78 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  20. Lv, J., Li, R., Yao, Y.: Quasi-cyclic constructions of asymmetric quantum error-correcting codes. Cryptogr. Commun. 13, 661–680 (2021)

    Article  MathSciNet  Google Scholar 

  21. Ling, S., Xing, C.P.: Coding Theory-A First Course. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  22. Özbudak, F., Stichtenoth, H.: Note on Niederreiter–Xing’s propagation rule for linear codes. Appl. Algebra Eng. Comm. Comput. 13(1), 53–56 (2002)

    Article  MathSciNet  Google Scholar 

  23. Qian, J., Zhang, L.: New optimal asymmetric quantum codes. Mod. Phys. Lett. B 27(2), 1350010 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  24. Steane, A.: Simple quantum error-correcting codes. Phys. Rev. A 54(6), 4741–4751 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  25. Stephens, A.M., Evans, Z.W.E., Devitt, S.J., Hollenberg, L.C.L.: Asymmetric quantum error correction via code conversion. Phys. Rev. A 77(1–5), 062335 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  26. Sarvepalli, P.K., Klappenecker, A., Rötteler, M.: Asymmetric quantum codes: constructions, bounds and performance. Proc. R. Soc. A 465, 1645–1672 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  27. Wang, L.Q., Zhu, S.X.: On the construction of optimal asymmetric quantum codes. Int. J. Quantum Inf. 12(1–11), 1450017 (2014)

    Article  MathSciNet  Google Scholar 

  28. Xu, G., Li, R.H., Guo, L.B., Lu, L.D.: New optimal asymmetric quantum codes constructed from constacyclic codes. Int. J. Mod. Phys. B 31(1–14), 1750030 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by Research Funds of Hubei Province (Grant No. Q20164505) and the talent project of Hubei Polytechnic University of China (Grant No. 16xjzo8R).

Author information

Authors and Affiliations

Authors

Contributions

Hualu Liu constructed asymmetric quantum codes of length 2n by using the Euclidean sums of matrix-product codes over F_q. Xiusheng Liu used the computer algebra system MAGMA to find more new good asymmetric quantum codes. Yuan Yuan provided three classes of asymmetric quantum codes with good parameters via Fourier matrix.

Corresponding author

Correspondence to Yuan Yuan.

Ethics declarations

Conflict of interest

The author declares that she has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Liu, X. & Yuan, Y. New asymmetric quantum codes from matrix-product codes. Quantum Inf Process 23, 229 (2024). https://doi.org/10.1007/s11128-024-04445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04445-3

Keywords

Mathematics Subject Classification