Abstract
Nonlinear optical phenomena have noticeable importance in quantum computation and quantum information processing. The optical nonlinearity leads to the generation of new frequency components possessing nonclassical properties. In this paper, we have investigated nonclassical properties of output beams from a degenerate parametric amplifier (DPA) based on both linear and nonlinear coherent state approaches. Considering the rotating wave approximation, solutions of the Heisenberg equations of motion associated with the standard coherent and nonlinear coherent radiation fields are compared. Nonclassical properties including the first- and second-order squeezing, anti-bunching and photon statistics are investigated for the signal mode starting with different input field states. The calculations based on both approaches confirm the existence of the first-order squeezing in position quadrature (\(\hat{x}_1(\hat{X}_1)\) for linear(nonlinear) approach) of the field with no squeezing in momentum quadrature, while the second-order squeezing occurs in the momentum quadrature of the field (\(\hat{x}_2(\hat{X}_2)\) for linear(nonlinear) approach) with no squeezing in position quadrature. In addition, photon statistics has been studied wherein anti-bunching has been observed using both approaches. The comparison of the obtained results from the two approaches confirms that in the nonlinear approach the nonclassical properties of the output beams are more amplified.










Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
No datasets were generated or analyzed during the current study.
References
Albarelli, F., Ferraro, A., Paternostro, M., Paris, M.G.A.: Nonlinearity as a resource for nonclassicality in anharmonic systems. Phys. Rev. A 93(3), 032112 (2016)
Xue-xiang, Xu., Yuan, Hong-chun: Conditional generation of multiphoton-subtracted squeezed vacuum states: loss consideration and operator description. Quantum Inf. Process. 19, 1–15 (2020)
Franken, P.A., Hill, A.E., Peters, C.W., Weinreich, G.: Generation of optical harmonics. Phys. Rev. Lett. 7(4), 118 (1961)
Boyd, R.W.: Nonlinear Optics. Academic Press, Boca Raton (2020)
Ralph, T.C., Gilchrist, A., Milburn, G.J., Munro, W.J., Glancy, S.: Quantum computation with optical coherent states. Phys. Rev. A 68(4), 042319 (2003)
Bartlett, S.D., Sanders, B.C.: Universal continuous-variable quantum computation: requirement of optical nonlinearity for photon counting. Phys. Rev. A 65(4), 042304 (2002)
Vahlbruch, H., Chelkowski, S., Danzmann, K., Schnabel, R.: Quantum engineering of squeezed states for quantum communication and metrology. New J. Phys. 9(10), 371 (2007)
Marino, A.M., Stroud, C.R.: Deterministic secure communications using two-mode squeezed states. Phys. Rev. A 74(2), 022315 (2006)
Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2010)
Cardoso, F.R., Rossatto, D.Z., Fernandes, G.P.L.M., Higgins, G., Villas-Boas, C.J.: Superposition of two-mode squeezed states for quantum information processing and quantum sensing. Phys. Rev. A 103(6), 062405 (2021)
Hillery, M.: Quantum cryptography with squeezed states. Phys. Rev. A 61(2), 022309 (2000)
Huang, H., Zhu, S.Y., Zubairy, M.S.: Noise-free amplification of squeezed light via atomic coherence. Phys. Rev. A 52(5), 4155 (1995)
Mehmet, M., Ast, S., Eberle, T., Steinlechner, S., Vahlbruch, H., Schnabel, R.: Squeezed light at 1550 nm with a quantum noise reduction of 12.3 db. Opt. Express 19(25), 25763–25772 (2011)
Weyrauch, M., Voronov, V.G.: Reduction of quantum noise in optical interferometers using squeezed light. Opt. Spectrosc. 111, 709–712 (2011)
Glauber, R.J.: The quantum theory of optical coherence. Phys. Rev. 130(6), 2529 (1963)
de Matos Filho, R.L., Vogel, W.: Nonlinear coherent states. Phys. Rev. A 54(5), 4560 (1996)
Man’ko, V.I., Marmo, G., Sudarshan, E.C.G., Zaccaria, F.: f-oscillators and nonlinear coherent states. Phys. Scr. 55(5), 528 (1997)
Roknizadeh, R., Tavassoly, M.K.: The construction of some important classes of generalized coherent states: the nonlinear coherent states method. J. Phys. A: Math. Gen. 37(33), 8111 (2004)
Safaeian, O., Tavassoly, M.K.: Deformed photon-added nonlinear coherent states and their non-classical properties. J. Phys. A: Math. Theor. 44(22), 225301 (2011)
Karimi, A., Tavassoly, M.K.: Quantum engineering and nonclassical properties of su (1, 1) and su (2) entangled nonlinear coherent states. JOSA B 31(10), 2345–2353 (2014)
Tavassoly, M.K.: On the non-classicality features of new classes of nonlinear coherent states. Opt. Commun. 283(24), 5081–5091 (2010)
Roy, B., Roy, P.: New nonlinear coherent states and some of their nonclassical properties. J. Opt. B: Quantum Semiclass. Opt. 2(1), 65 (2000)
Belfakir, A., Hassouni, Y.: Bipartite entanglement of generalized Barut–Girardello nonlinear coherent states. Quantum Inf. Process. 20, 1–19 (2021)
Michler, P., Kiraz, A., Becher, C., Schoenfeld, W.V., Petroff, P.M., Zhang, L., Hu, E., Imamoglu, A.: A quantum dot single-photon turnstile device. Science 290(5500), 2282–2285 (2000)
Pisanello, F., Martiradonna, L., Leménager, G., Spinicelli, P., Fiore, A., Manna, L., Hermier, Jean-Pierre., Cingolani, R., Giacobino, E., De Vittorio, M., et al.: Room temperature-dipolelike single photon source with a colloidal dot-in-rod. Appl. Phys. Lett. 96(3), 033101 (2010)
Kurtsiefer, C., Mayer, S., Zarda, P., Weinfurter, H.: Stable solid-state source of single photons. Phys. Rev. Lett. 85(2), 290 (2000)
Liew, T.C.H., Savona, V.: Single photons from coupled quantum modes. Phys. Rev. Lett. 104(18), 183601 (2010)
Amazioug, M., Daoud, M., Singh, S.K., Asjad, M.: Strong photon antibunching effect in a double-cavity optomechanical system with intracavity squeezed light. Quantum Inf. Process. 22(8), 301 (2023)
Wen-ju, Gu., Li, Gao-xiang, Yang, Ya.-ping: Generation of squeezed states in a movable mirror via dissipative optomechanical coupling. Phys. Rev. A 88(1), 013835 (2013)
Zagoskin, A.M., Il’Ichev, E., McCutcheon, M.W., Young, J.F., Nori, F.: Controlled generation of squeezed states of microwave radiation in a superconducting resonant circuit. Phys. Rev. Lett. 101(25), 253602 (2008)
Turnbull, M.T., Petrov, P.G., Embrey, C.S., Marino, A.M., Boyer, V.: Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light. Phys. Rev. A 88(3), 033845 (2013)
Rhoads, J.F., Shaw, S.W.: The impact of nonlinearity on degenerate parametric amplifiers. Appl. Phys. Lett. 96(23), 234101 (2010)
Milburn, G., Walls, D.F.: Production of squeezed states in a degenerate parametric amplifier. Opt. Commun. 39(6), 401–404 (1981)
Lamprou, T.H., Liontos, I., Papadakis, N.C., Tzallas, P.: A perspective on high photon flux nonclassical light and applications in nonlinear optics. High Power Laser Sci. Eng. 8, 42 (2020)
Shan, L., Ren, J., Zhang, Q., Liu, Q., Ma, Y., Gong, Q., Gu, Y.: Generation and modulation of non-classical light in a strongly coupled photon-emitter system. Photonics Res. 10(4), 989–998 (2022)
Gonoskov, I., Sondenheimer, R., Hünecke, C., Kartashov, D., Peschel, U., Gräfe, S.: Nonclassical light generation and control from laser-driven semiconductor intraband excitations. Phys. Rev. B 109(12), 125110 (2024)
Dwyer, S.E., Mansell, G.L., McCuller, L.: Squeezing in gravitational wave detectors. Galaxies 10(2), 46 (2022)
Bondurant, R.S., Shapiro, J.H.: Squeezed states in phase-sensing interferometers. Phys. Rev. D 30(12), 2548 (1984)
Abadie, J., Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M., et al.: A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7(12), 962–965 (2011)
Grote, H., Danzmann, K., Dooley, K.L., Schnabel, R., Slutsky, J., Vahlbruch, H.: First long-term application of squeezed states of light in a gravitational-wave observatory. Phys. Rev. Lett. 110(18), 181101 (2013)
Oberreiter, L., Gerhardt, I.: Light on a beam splitter: more randomness with single photons. Laser Photonics Rev. 10(1), 108–115 (2016)
Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)
Momeni-Demneh, M., Mahdifar, A., Roknizadeh, R.: Nonlinear optical effects on the atom-field interaction based on the nonlinear coherent states approach. JOSA B 39(5), 1353–1363 (2022)
Esposito, M., Ranadive, A., Planat, L., Leger, S., Fraudet, D., Jouanny, V., Buisson, O., Guichard, W., Naud, C., Aumentado, J., et al.: Observation of two-mode squeezing in a traveling wave parametric amplifier. Phys. Rev. Lett. 128(15), 153603 (2022)
Chen, P., Briggs, I., Hou, S., Fan, L.: Ultra-broadband quadrature squeezing with thin-film lithium niobate nanophotonics. Opt. Lett. 47(6), 1506–1509 (2022)
Jiang, K., Wei, L.F.: Generating antibunching light by beam-splitting photon number resolved detection from the superbunching squeezed vacuum. Phys. Lett. A 403, 127396 (2021)
Hillery, M.: Amplitude-squared squeezing of the electromagnetic field. Phys. Rev. A 36(8), 3796 (1987)
Boddeda, R., Glorieux, Q., Bramati, A., Pigeon, S.: Generating strong anti-bunching by interfering nonclassical and classical states of light. J. Phys. B: At. Mol. Opt. Phys. 52(21), 215401 (2019)
Park, T., Stokowski, H., Ansari, V., Gyger, S., Multani, K.K.S., Celik, O.T., Hwang, A.Y., Dean, D.J., Mayor, F., McKenna, T.P., et al.: Single-mode squeezed-light generation and tomography with an integrated optical parametric oscillator. Sci. Adv. 10(11), 1814 (2024)
Vaswani, C., Mootz, M., Sundahl, C., Mudiyanselage, D.H., Kang, J.H., Yang, X., Cheng, D., Huang, C., Kim, R.H.J., Liu, Z., et al.: Terahertz second-harmonic generation from lightwave acceleration of symmetry-breaking nonlinear supercurrents. Phys. Rev. Lett. 124(20), 207003 (2020)
Danylov, A.A., Goyette, T.M., Waldman, J., Coulombe, M.J., Gatesman, A.J., Giles, R.H., Goodhue, W.D., Qian, X., Nixon, W.E.: Frequency stabilization of a single mode terahertz quantum cascade laser to the kilohertz level. Opt. Express 17(9), 7525–7532 (2009)
Walls, D.F., Milburn, G.J.: Generation and applications of squeezed light. Quantum Optics 137–175 (1994)
Rauf, Z., Zubairy, M.S.: Phase fluctuations in a degenerate parametric amplifier. Phys. Rev. A 36(3), 1481 (1987)
Imamoḡlu, A., Schmidt, H., Woods, G., Deutsch, M.: Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79(8), 1467 (1997)
Author information
Authors and Affiliations
Contributions
MKT presented the idea, MKT and AN wrote the manuscript text, and AN prepared figures; however, all authors analyzed the results and reviewed the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Noury, A., Tavassoly, M.K. Amplification of squeezing and anti-bunching in the output beams from a degenerate parametric amplifier: linear and nonlinear coherent state approaches. Quantum Inf Process 23, 234 (2024). https://doi.org/10.1007/s11128-024-04446-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04446-2