Skip to main content
Log in

Early-stage disentanglement out of thermal equilibrium

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we examine how finite time disentanglement can be manipulated for the quantum system out of thermal equilibrium. To this aim, we employ the Markovian master equation approach to find the rate equations and Wootter’s concurrence to analyze out of thermal equilibrium entanglement dynamics for Dicke bases. The effect of super- and sub-radiant rates on entanglement sudden death is examined for different classes of X-states. It is found that the shorter dark period is achieved at a higher transition rate of a super-radiant state. This approach allows us to analyze the further applications of quantum information technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)

    MathSciNet  ADS  Google Scholar 

  2. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277 (1989)

    ADS  Google Scholar 

  3. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80(2), 517 (2008)

    MathSciNet  ADS  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    MathSciNet  ADS  Google Scholar 

  5. Pan, J.W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80(18), 3891 (1998)

    MathSciNet  ADS  Google Scholar 

  6. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    MathSciNet  ADS  Google Scholar 

  7. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    ADS  Google Scholar 

  8. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    MathSciNet  ADS  Google Scholar 

  9. Nielsen, M.A., Chuang, I.L.: Quantum Information and Quantum Computation, vol. 2 (2000)

  10. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93(14), 140404 (2004)

    ADS  Google Scholar 

  11. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323(5914), 598–601 (2009)

    MathSciNet  ADS  Google Scholar 

  12. Wang, F., Hou, P.Y., Huang, Y.Y., Zhang, W.G., Ouyang, X.L., Wang, X., Duan, L.M.: Observation of entanglement sudden death and rebirth by controlling a solid-state spin bath. Phys. Rev. B 98(6), 064306 (2018)

    ADS  Google Scholar 

  13. Ficek, Z., Tanaś, R.: Dark periods and revivals of entanglement in a two-qubit system. Phys. Rev. A 74(2), 024304 (2006)

    ADS  Google Scholar 

  14. Qian, X.F., Eberly, J.H.: Initial conditions and entanglement sudden death. Phys. Lett. A 376(45), 2931–2934 (2012)

    ADS  Google Scholar 

  15. Liu, R.F., Chen, C.C.: Role of the Bell singlet state in the suppression of disentanglement. Phys. Rev. A 74(2), 024102 (2006)

    MathSciNet  ADS  Google Scholar 

  16. Roszak, K., Machnikowski, P.: Publisher’s Note: Complete disentanglement by partial pure dephasing [Phys. Rev. A73, 022313 (2006)]. Phys. Rev. A 73(2), 029906 (2006)

  17. Shaukat, M.I., Shaheen, A., Toor, A.H.: Early stage disentanglement and non-Markovianity. J. Mod. Opt. 60(21), 1937–1948 (2013)

    ADS  Google Scholar 

  18. Shaukat, M.I.: Entanglement sudden death with quasi-static approximation. Eur. Phys. J. Plus 137(2), 1–9 (2022)

    MathSciNet  Google Scholar 

  19. Shaukat, M.I., Castro, E.V., Terças, H.: Entanglement sudden death and revival in quantum dark-soliton qubits. Phys. Rev. A 98(2), 022319 (2018)

    ADS  Google Scholar 

  20. Abdel-Khalek, S., Barzanjeh, S., Eleuch, H.: Entanglement sudden death and sudden birth in semiconductor microcavities. Int. J. Theor. Phys. 50, 2939–2950 (2011)

    Google Scholar 

  21. Su, X.Q., Wang, A.M., San Ma, X., Qiu, L.: Entanglement sudden death in a spin channel. J. Phys. A Math. Theor. 40(37), 11385 (2007)

    MathSciNet  ADS  Google Scholar 

  22. Ali, M., Alber, G., Rau, A.R.P.: Manipulating entanglement sudden death of two-qubit X-states in zero-and finite-temperature reservoirs. J. Phys. B At. Mol. Opt. Phys. 42(2), 025501 (2008)

    ADS  Google Scholar 

  23. Pan, C.N., Fang, J.S., Fang, M.F.: Entanglement dynamics of two-qubit systems in different quantum noises. Chin. Phys. B 20(2), 020304 (2011)

    ADS  Google Scholar 

  24. Tchoffo, M., Kenfack, L.T., Fouokeng, G.C., Fai, L.C.: Quantum correlations dynamics and decoherence of a three-qubit system subject to classical environmental noise. Eur. Phys. J. Plus 131, 1–18 (2016)

    Google Scholar 

  25. Yang, C.J., An, J.H., Yang, W., Li, Y.: Generation of stable entanglement between two cavity mirrors by squeezed-reservoir engineering. Phys. Rev. A 92(6), 062311 (2015)

    ADS  Google Scholar 

  26. Pedram, A., Müstecaplıoǧlu, Ö.E.: An Overview: Steady-State Quantum Entanglement via Reservoir Engineering. arXiv preprint arXiv:2303.00490 (2023)

  27. Kwiat, P.G., Barraza-Lopez, S., Stefanov, A., Gisin, N.: Experimental entanglement distillation and ‘hidden’ non-locality. Nature 409(6823), 1014–1017 (2001)

    ADS  Google Scholar 

  28. Maniscalco, S., Francica, F.: RL Zaffino, N. Lo Gullo, and F. Plastina. Phys. Rev. Lett 100, 090503 (2008)

  29. Agarwal, G.S.: Quantum Statistical Theories of Spontaneous Emission and Their Relation to Other Approaches. Springer, Berlin (2006)

    Google Scholar 

  30. Ficek, Z., Swain, S.: Quantum Interference and Coherence: Theory and Experiments, vol. 100. Springer, Berlin (2005)

    Google Scholar 

  31. Tayyab, A., Javed, S., Shaukat, M.I.: Superdense coding for V-shaped channel and cylindrical geometry. Phys. Scr. 98(9), 095109 (2023)

    ADS  Google Scholar 

  32. Almutairi, K., Tanaś, R., Ficek, Z.: Generating two-photon entangled states in a driven two-atom system. Phys. Rev. A 84(1), 013831 (2011)

    ADS  Google Scholar 

  33. Quiroga, L., Rodriguez, F.J., Ramirez, M.E., Paris, R.: Nonequilibrium thermal entanglement. Phys. Rev. A 75(3), 032308 (2007)

    ADS  Google Scholar 

  34. Sinaysky, I., Petruccione, F., Burgarth, D.: Dynamics of nonequilibrium thermal entanglement. Phys. Rev. A 78(6), 062301 (2008)

    ADS  Google Scholar 

  35. Huang, X.L., Guo, J.L., Yi, X.X.: Nonequilibrium thermal entanglement in a three-qubit X X model. Phys. Rev. A 80(5), 054301 (2009)

    ADS  Google Scholar 

  36. Linden, N., Popescu, S., Skrzypczyk, P.: How small can thermal machines be? The smallest possible refrigerator. Phys. Rev. Lett. 105(13), 130401 (2010)

    ADS  Google Scholar 

  37. Skrzypczyk, P., Brunner, N., Linden, N., Popescu, S.: The smallest refrigerators can reach maximal efficiency. J. Phys. A Math. Theor. 44(49), 492002 (2011)

    MathSciNet  Google Scholar 

  38. Tacchino, F., Auffèves, A., Santos, M.F., Gerace, D.: Steady state entanglement beyond thermal limits. Phys. Rev. Lett. 120(6), 063604 (2018)

    ADS  Google Scholar 

  39. Bellomo, B., Antezza, M.: Creation and protection of entanglement in systems out of thermal equilibrium. New J. Phys. 15(11), 113052 (2013)

    ADS  Google Scholar 

  40. Bellomo, B., Antezza, M.: Steady entanglement out of thermal equilibrium. Europhys. Lett. 104(1), 10006 (2013)

    ADS  Google Scholar 

  41. Obrecht, J.M., Wild, R.J., Antezza, M., Pitaevskii, L.P., Stringari, S., Cornell, E.A.: Measurement of the temperature dependence of the Casimir–Polder force. Phys. Rev. Lett. 98(6), 063201 (2007)

    ADS  Google Scholar 

  42. Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93(1), 99 (1954)

    ADS  Google Scholar 

  43. Parker, S., Bose, S., Plenio, M.B.: Entanglement quantification and purification in continuous-variable systems. Phys. Rev. A 61(3), 032305 (2000)

    ADS  Google Scholar 

  44. Moroder, T., Bancal, J.D., Liang, Y.C., Hofmann, M., Gühne, O.: Device-independent entanglement quantification and related applications. Phys. Rev. Lett. 111(3), 030501 (2013)

    ADS  Google Scholar 

  45. Fadel, M., Usui, A., Huber, M., Friis, N., Vitagliano, G.: Entanglement quantification in atomic ensembles. Phys. Rev. Lett. 127(1), 010401 (2021)

    MathSciNet  ADS  Google Scholar 

  46. Abebe, T., Gemechu, N., Shogile, K., Hailemariam, S., Gashu, C., Adisu, S.: Entanglement quantification using various inseparability criteria for correlated photons. Rom. J. Phys. 65(3–4), 107 (2020)

    Google Scholar 

  47. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245 (1998)

    ADS  Google Scholar 

  48. Eltschka, C., Siewert, J.: Negativity as an estimator of entanglement dimension. Phys. Rev. Lett. 111(10), 100503 (2013)

    ADS  Google Scholar 

  49. Miranowicz, A., Ishizaka, S.: Closed formula for the relative entropy of entanglement. Phys. Rev. A 78(3), 032310 (2008)

    MathSciNet  ADS  Google Scholar 

  50. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880 (1969)

    ADS  Google Scholar 

  51. Ishizaka, S., Hiroshima, T.: Maximally entangled mixed states under nonlocal unitary operations in two qubits. Phys. Rev. A 62(2), 022310 (2000)

    ADS  Google Scholar 

  52. De Chiara, G., Landi, G., Hewgill, A., Reid, B., Ferraro, A., Roncaglia, A.J., Antezza, M.: Reconciliation of quantum local master equations with thermodynamics. New J. Phys. 20(11), 113024 (2018)

    Google Scholar 

  53. Yashodamma, K.O., Geetha, P.J., Sudha: Effectiveness of depolarizing noise in causing sudden death of entanglement. Quantum Inf. Process. 13, 2551–2565 (2014)

    MathSciNet  ADS  Google Scholar 

  54. Zhang, W.M.: Exact master equation and general non-Markovian dynamics in open quantum systems. Eur. Phys. J. Spec. Top. 227, 1849–1867 (2019)

    Google Scholar 

  55. Vijayan, J., Piotrowski, J., Gonzalez-Ballestero, C., Weber, K., Romero-Isart, O., Novotny, L.: Cavity-mediated long-range interactions in levitated optomechanics. Nat. Phys. 66, 1–6 (2024)

    Google Scholar 

  56. Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82(3), 034302 (2010)

    MathSciNet  ADS  Google Scholar 

  57. Weinstein, Y.S.: Entanglement evolution in a five qubit error correction code. Quantum Inf. Process. 10, 533–542 (2011)

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ansha Tayyab and Seerat Javed wrote the main manuscript. Ansha Tayyab prepared figures. Muzzamal Iqbal Shaukat supervised the research. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ansha Tayyab.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayyab, A., Javed, S. & Shaukat, M.I. Early-stage disentanglement out of thermal equilibrium. Quantum Inf Process 23, 249 (2024). https://doi.org/10.1007/s11128-024-04447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04447-1

Keywords