Skip to main content
Log in

Implementation and analysis of quantum-classical hybrid interactive image segmentation algorithm based on quantum annealer

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

With the development of computer vision and digital image processing technology, image segmentation has become an important part of various image processing and image analysis. Since interactive segmentation can obtain more accurate results than automatic segmentation, the most representative Graph Cuts has gradually become a popular method in image segmentation. However, this algorithm has two significant disadvantages. On the one hand, if the background is complex or very similar to the foreground, the accuracy will be low; on the other hand, the algorithm is slow and the iteration process is complicated. To improve it, this paper proposes a new image segmentation algorithm based on quantum annealing and Graph Cuts. The algorithm beds the classical interactive image segmentation problem into a quantum optimization algorithm and obtains ideal image segmentation results on the D-Wave quantum annealer. Meanwhile, it is compared with the other three methods. Compared with MATLAB, the segmentation results are more beautiful, with an average precision higher than 5.27% and an average recall higher than 5.43%; the quantum annealing time is always lower than the simulated annealing time; and the success probability is more than twice that of the quantum approximate optimization algorithm. Therefore, it is concluded that this method is superior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Wang, Z., Xu, M., Zhang, Y.: Review of quantum image processing. Arch. Comput. Methods Eng. 29(2), 737–761 (2022). https://doi.org/10.1007/s11831-021-09599-2

    Article  MathSciNet  Google Scholar 

  2. Gao, J., Wang, Y., Song, Z., Wang, S.: Quantum image encryption based on quantum DNA codec and pixel-level scrambling. Entropy 25(6), 865 (2023). https://doi.org/10.3390/e25060865

    Article  ADS  Google Scholar 

  3. Zhao, J., Zhang, T., Jiang, J., Fang, T., Ma, H.: Color image encryption scheme based on alternate quantum walk and controlled Rubik’s cube. Sci. Rep. 12(1), 14253 (2022). https://doi.org/10.1038/s41598-022-18079-x

    Article  ADS  Google Scholar 

  4. Shukla, A., Vedula, P.: A hybrid classical-quantum algorithm for digital image processing. Quantum Inf. Process. 22(1), 3 (2022). https://doi.org/10.1007/s11128-022-03755-8

    Article  ADS  MathSciNet  Google Scholar 

  5. Yu, Y., Gao, J., Mu, X., Wang, S.: Adaptive LSB quantum image watermarking algorithm based on Haar wavelet transforms. Quantum Inf. Process. 22(5), 180 (2023). https://doi.org/10.1007/s11128-023-03926-1

    Article  ADS  MathSciNet  Google Scholar 

  6. Caraiman, S., Manta, V.I.: Image segmentation on a quantum computer. Quantum Inf. Process. 14, 1693–1715 (2015). https://doi.org/10.1007/s11128-015-0932-1

    Article  ADS  MathSciNet  Google Scholar 

  7. Yuan, S., Zhao, W., Gao, S., Xia, S., Hang, B., Qu, H.: An adaptive threshold-based quantum image segmentation algorithm and its simulation. Quantum Inf. Process. 21(10), 359 (2022). https://doi.org/10.1007/s11128-022-03709-0

    Article  ADS  MathSciNet  Google Scholar 

  8. Brady, L.T., Baldwin, C.L., Bapat, A., Kharkov, Y., Gorshkov, A.V.: Optimal protocols in quantum annealing and quantum approximate optimization algorithm problems. Phys. Rev. Lett. 126(7), 070505 (2021). https://doi.org/10.1103/PhysRevLett.126.070505

    Article  ADS  MathSciNet  Google Scholar 

  9. Rajak, A., Suzuki, S., Dutta, A., Chakrabarti, B.K.: Quantum annealing: an overview. Philos. Trans. R. Soc. A 381(2241), 20210417 (2023). https://doi.org/10.1098/rsta.2021.0417

    Article  ADS  Google Scholar 

  10. Chakrabarti, B.K., Leschke, H., Ray, P., Shirai, T., Tanaka, S.: Quantum annealing and computation: challenges and perspectives. Philos. Trans. R. Soc. A 381(2241), 20210419 (2023). https://doi.org/10.1098/rsta.2021.0419

    Article  ADS  Google Scholar 

  11. King, J., Yarkoni, S., Raymond, J., Ozfidan, I., King, A.D., Nevisi, M.M., Hilton, J.P., McGeoch, C.C.: Quantum annealing amid local ruggedness and global frustration. J. Phys. Soc. Jpn. 88(6), 061007 (2019). https://doi.org/10.7566/JPSJ.88.061007

    Article  ADS  Google Scholar 

  12. Arai, S., Oshiyama, H., Nishimori, H.: Effectiveness of quantum annealing for continuous-variable optimization. Phys. Rev. A 108(4), 042403 (2023). https://doi.org/10.1103/PhysRevA.108.042403

    Article  ADS  MathSciNet  Google Scholar 

  13. Li, J., Ghosh, S.: Quantum-soft qubo suppression for accurate object detection. In: European Conference on Computer Vision, pp. 158–173 (2020). Springer

  14. Jun, K., Lee, H.: Hubo and qubo models for prime factorization. Sci. Rep. 13(1), 10080 (2023). https://doi.org/10.1038/s41598-023-36813-x

    Article  ADS  Google Scholar 

  15. Heng, S., Kim, D., Kim, T., Han, Y.: How to solve combinatorial optimization problems using real quantum machines: a recent survey. IEEE Access 10, 120106–120121 (2022). https://doi.org/10.1109/access.2022.3218908

    Article  Google Scholar 

  16. Nath, R.K., Thapliyal, H., Humble, T.S.: A review of machine learning classification using quantum annealing for real-world applications. SN Comput. Sci. 2, 1–11 (2021). https://doi.org/10.1007/s42979-021-00751-0

    Article  Google Scholar 

  17. Abel, S., Blance, A., Spannowsky, M.: Quantum optimization of complex systems with a quantum annealer. Phys. Rev. A 106(4), 042607 (2022). https://doi.org/10.1103/PhysRevA.106.042607

    Article  ADS  MathSciNet  Google Scholar 

  18. Hegde, P.R., Passarelli, G., Scocco, A., Lucignano, P.: Genetic optimization of quantum annealing. Phys. Rev. A 105(1), 012612 (2022). https://doi.org/10.1103/PhysRevA.105.012612

    Article  ADS  MathSciNet  Google Scholar 

  19. Sack, S.H., Serbyn, M.: Quantum annealing initialization of the quantum approximate optimization algorithm. Quantum 5, 491 (2021). https://doi.org/10.22331/q-2021-07-01-491

    Article  Google Scholar 

  20. Albash, T., Lidar, D.A.: Demonstration of a scaling advantage for a quantum annealer over simulated annealing. Phys. Rev. X 8(3), 031016 (2018). https://doi.org/10.1103/PhysRevX.8.031016

    Article  Google Scholar 

  21. Schworm, P., Wu, X., Glatt, M., Aurich, J.C.: Solving flexible job shop scheduling problems in manufacturing with quantum annealing. Prod. Eng. Res. Devel. 17(1), 105–115 (2023). https://doi.org/10.1007/s11740-022-01145-8

    Article  Google Scholar 

  22. Hegde, P.R., Passarelli, G., Cantele, G., Lucignano, P.: Deep learning optimal quantum annealing schedules for random Ising models. New J. Phys. 25(7), 073013 (2023). https://doi.org/10.1088/1367-2630/ace547

    Article  ADS  MathSciNet  Google Scholar 

  23. Oliviero, S.F., Leone, L., Hamma, A.: Magic-state resource theory for the ground state of the transverse-field Ising model. Phys. Rev. A 106(4), 042426 (2022). https://doi.org/10.1103/PhysRevA.106.042426

    Article  ADS  MathSciNet  Google Scholar 

  24. Singh, N.B., Krishna, G., Roy, A., Pachuau, J.L., Saha, A.K.: An experimental study on binary optimization using quantum annealing in D-Wave. In: 2022 Seventh International Conference on Informatics and Computing (ICIC), pp. 1–5. IEEE (2022)

  25. Jun, K., Conley, R., Huang, Y., Lim, H., Yu, K.: Solving linear systems by quadratic unconstrained binary optimization on d-wave quantum annealing device. In: Quantum Information Science, Sensing, and Computation XIII, vol. 11726, pp. 41–47 (2021). SPIE

  26. Pelofske, E., Hahn, G., O’Malley, D., Djidjev, H.N., Alexandrov, B.S.: Quantum annealing algorithms for Boolean tensor networks. Sci. Rep. 12(1), 8539 (2022). https://doi.org/10.1038/s41598-022-12611-9

    Article  ADS  Google Scholar 

  27. Willsch, D., Willsch, M., Gonzalez Calaza, C.D., Jin, F., De Raedt, H., Svensson, M., Michielsen, K.: Benchmarking advantage and D-Wave 2000Q quantum annealers with exact cover problems. Quantum Inf. Process. 21(4), 141 (2022). https://doi.org/10.1007/s11128-022-03476-y

    Article  ADS  MathSciNet  Google Scholar 

  28. Jiang, J.-R., Chu, C.-W.: Classifying and benchmarking quantum annealing algorithms based on quadratic unconstrained binary optimization for solving NP-hard problems. IEEE Access (2023). https://doi.org/10.1109/ACCESS.2023.3318206

    Article  Google Scholar 

  29. Zaman, M., Tanahashi, K., Tanaka, S.: Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Trans. Comput. 71(4), 838–850 (2021). https://doi.org/10.1109/TC.2021.3063618

    Article  Google Scholar 

  30. Herman, D., Googin, C., Liu, X., Sun, Y., Galda, A., Safro, I., Pistoia, M., Alexeev, Y.: Quantum computing for finance. Nat. Rev. Phys. 5(8), 450–465 (2023). https://doi.org/10.1038/s42254-023-00603-1

    Article  Google Scholar 

  31. Wroński, M.: Practical solving of discrete logarithm problem over prime fields using quantum annealing. In: International Conference on Computational Science, pp. 93–106 (2022). Springer

  32. Kordzanganeh, M., Buchberger, M., Kyriacou, B., Povolotskii, M., Fischer, W., Kurkin, A., Somogyi, W., Sagingalieva, A., Pflitsch, M., Melnikov, A.: Benchmarking simulated and physical quantum processing units using quantum and hybrid algorithms. Adv. Quantum Technol. 6(8), 2300043 (2023)

    Article  Google Scholar 

  33. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3523–3542 (2021). https://doi.org/10.1109/TPAMI.2021.3059968

    Article  Google Scholar 

  34. Li, Z., Chen, Q., Koltun, V.: Interactive image segmentation with latent diversity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 577–585 (2018)

  35. Shen, X., Hertzmann, A., Jia, J., Paris, S., Price, B., Shechtman, E., Sachs, I.: Automatic portrait segmentation for image stylization. In: Computer Graphics Forum, vol. 35, pp. 93–102 (2016). Wiley Online Library

  36. Jang, W.-D., Kim, C.-S.: Interactive image segmentation via backpropagating refinement scheme. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5297–5306 (2019)

  37. Feng, J., Wang, X., Liu, W.: Deep graph cut network for weakly-supervised semantic segmentation. Sci. China Inf. Sci. 64, 1–12 (2021). https://doi.org/10.1007/s11432-020-3065-4

    Article  Google Scholar 

  38. Alzahrani, Y., Boufama, B.: Biomedical image segmentation: a survey. SN Comput. Sci. 2, 1–22 (2021). https://doi.org/10.1007/s42979-021-00704-7

    Article  Google Scholar 

  39. Nair, N.S., Nair, M.S.: Multi-view stereo using graph cuts-based depth refinement. IEEE Signal Process. Lett. 29, 1903–1907 (2022). https://doi.org/10.1109/LSP.2022.3201778

    Article  ADS  Google Scholar 

  40. Hu, W., Yao, X., Zheng, Z., Zhang, X., Zhong, Y., Wang, X., Zhang, Y., Wang, Y.: Error attention interactive segmentation of medical image through matting and fusion, pp. 11–20 (2020). https://doi.org/10.1007/978-3-030-59861-7_2. Springer

  41. Brust, A.F., Payton, E.J., Hobbs, T.J., Niezgoda, S.R.: Application of the maximum flow-minimum cut algorithm to segmentation and clustering of materials datasets. Microsc. Microanal. 25(4), 924–941 (2019). https://doi.org/10.1017/S1431927619014569

    Article  ADS  Google Scholar 

  42. Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 612–623 (2022). IEEE

  43. Kovalev, K., Novichikhin, A.: Ford–Fulkerson algorithm refinement for the cooperation effectiveness increase of intensive and low-density lines. In: Journal of Physics: Conference Series, vol. 2131, p. 032008 (2021). IOP Publishing

  44. Zaborniak, T., Sousa, R.: In situ noise characterization of the D-Wave quantum annealer. In: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 409–412 (2020). IEEE

  45. Bajracharya, R., Shakya, S.: Task scheduling optimization in the cloud using quantum annealing. In: 2023 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 385–391 (2023). IEEE

  46. Barletta, V.S., Caivano, D., Lako, A., Pal, A.: Quantum as a service architecture for security in a smart city. In: International Conference on the Quality of Information and Communications Technology, pp. 76–89 (2023). Springer

  47. Pasetto, E., Riedel, M., Melgani, F., Michielsen, K., Cavallaro, G.: Quantum SVR for chlorophyll concentration estimation in water with remote sensing. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022). https://doi.org/10.1109/lgrs.2022.3200325

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (Grant Nos. ZR2021LLZ001, ZR2022LLZ012, and ZR2021MF049) and the Major Science and Technology Research Project of Shandong Province (Grant No. 2023CXGC010901).

Author information

Authors and Affiliations

Authors

Contributions

K. formulated the overall research objectives and methods, collected relevant theoretical data, sought for relevant platforms, created the model and carried out the experimental simulation, and wrote the main manuscript text; S. participated in the model creation and experimental simulation; Q. and X. participated in the data collection; T. and H. guided and performed checking; T., as the corresponding author of this article, is responsible for the subsequent communication. All authors reviewed the manuscript.

Corresponding author

Correspondence to Tianhui Qiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Wang, S., Chen, Q. et al. Implementation and analysis of quantum-classical hybrid interactive image segmentation algorithm based on quantum annealer. Quantum Inf Process 23, 301 (2024). https://doi.org/10.1007/s11128-024-04512-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04512-9

Keywords