Skip to main content

Advertisement

Log in

On quantum codes derived from quasi-cyclic codes over a non-chain ring

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper presents a study on the structure of 1-generator quasi-cyclic (QC) codes over the non-chain ring \(R=\mathbb {F}_{q}+u\mathbb {F}_{q}+v\mathbb {F}_{q}+uv\mathbb {F}_{q}\), where \(u^2=v^2=0,~ uv=vu\), and \(\mathbb {F}_q\) is a finite field of cardinality \(q=p^r\); p is a prime. A minimal spanning set and size of these codes are determined. A sufficient condition for 1-generator QC codes over R to be free is given. BCH-type bounds on the minimum distance of free QC codes over R are also presented. Some optimal linear codes over \(\mathbb {F}_q\) are obtained as the Gray images of quasi-cyclic codes over R. Some characterizations of the Gray images of QC codes over R in \(\mathbb {F}_q\) and \(\mathbb {F}_q+u\mathbb {F}_q~(u^2=0)\) are done. As an application, we consider self-orthogonal subcodes of the Gray images of QC codes over R to obtain new and better quantum codes than those are available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

No data were used for the research described in this article.

References

  1. Hammons, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J., Solé, P.: The \(\mathbb{Z} _4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory 40(2), 301–319 (1994)

    Article  Google Scholar 

  2. Calderbank, A.R., Sloane, N.J.: Modular and \(p\)-adic cyclic codes. Des. Codes Cryptogr. 6, 21–35 (1995)

    Article  MathSciNet  Google Scholar 

  3. Calderbank, A.R., Cameron, P.J., Kantor, W.M., Seidel, J.J.: \(\mathbb{Z} _4\)-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets. Proc. Lond. Math. Soc. 75(2), 436–480 (1997)

    Article  Google Scholar 

  4. Kanwar, P., Lopez-Permouth, S.R.: Cyclic codes over the integers modulo \(p^m\). Finite Fields Appl. 3(4), 334–352 (1997)

    Article  MathSciNet  Google Scholar 

  5. Bonnecaze, A., Udaya, P.: Cyclic codes and self-dual codes over \(\mathbb{F} _2+u\mathbb{F} _2\). IEEE Trans. Inf. Theory 45(4), 1250–1255 (1999)

    Article  Google Scholar 

  6. Norton, G.H., Sălăgean, A.: On the structure of linear and cyclic codes over a finite chain ring. Appl. Algebra Eng. Commun. Comput. 10, 489–506 (2000)

    Article  MathSciNet  Google Scholar 

  7. Kewat, P.K., Ghosh, B., Pattanayak, S.: Cyclic codes over the ring \(\mathbb{Z} _p[u,~v]/\langle u^2,~v^2,~uv-vu\rangle \). Finite Fields Appl. 34, 161–175 (2015)

    Article  MathSciNet  Google Scholar 

  8. Esmaeili, M., Gulliver, T.A., Secord, N.P., Mahmoud, S.A.: A link between quasi-cyclic codes and convolutional codes. IEEE Trans. Inf. Theory 44(1), 431–435 (1998)

    Article  MathSciNet  Google Scholar 

  9. Kasami, T.: A Gilbert-Varshamov bound for quasi-cycle codes of rate 1/2 (Corresp.). IEEE Trans. Inf. Theory 20(5), 679–679 (1974)

    Article  MathSciNet  Google Scholar 

  10. Greenough, P.P., Hill, R.: Optimal ternary quasi-cyclic codes. Des. Codes Cryptogr. 2(1), 81–91 (1992)

    Article  MathSciNet  Google Scholar 

  11. Gulliver, T.A., Bhargava, V.K.: Some best rate \(1/p\) and rate \((p-1)/p\) systematic quasi-cyclic codes over \(GF(3)\) and \(GF(4)\). IEEE Trans. Inf. Theory 38(4), 1369–1374 (1992)

    Article  MathSciNet  Google Scholar 

  12. Aydin, N., Ray-Chaudhuri, D.K.: Quasi-cyclic codes over \(\mathbb{Z} _4\) and some new binary codes. IEEE Trans. Inf. Theory 48(7), 2065–2069 (2002)

    Article  Google Scholar 

  13. Bhaintwal, M., Wasan, S.K.: On quasi-cyclic codes over \(\mathbb{Z} _q\). Appl. Algebra Eng. Commun. Comput. 20(5–6), 459–480 (2009)

    Article  Google Scholar 

  14. Siap, I., Abualrub, T., Yildiz, B.: One generator quasi-cyclic codes over \(\mathbb{F} _2+ u\mathbb{F} _2\). J. Frankl. Inst. 349(1), 284–292 (2012)

    Article  Google Scholar 

  15. Aydin, N., Karadeniz, S., Yildiz, B.: Some new binary quasi-cyclic codes from codes over the ring \(\mathbb{F} _2+u\mathbb{F} _2+v\mathbb{F} _2+uv\mathbb{F} _2\). Appl. Algebra Eng. Commun. Comput. 24, 355–367 (2013)

    Article  Google Scholar 

  16. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), 2493 (1995)

    Article  ADS  Google Scholar 

  17. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098 (1996)

    Article  ADS  Google Scholar 

  18. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  19. Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.: Quantum error correction via codes over \(GF(4)\). IEEE Trans. Inform. Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  20. Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inform. Theory 47(7), 3065–3072 (2001)

    Article  MathSciNet  Google Scholar 

  21. Guenda, K., Gulliver, T.A.: Quantum codes over rings. Int. J. Quantum Inf. 12(04), 1450020 (2014)

    Article  MathSciNet  Google Scholar 

  22. Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \(\mathbb{F}_q+u\mathbb{F}_q+v\mathbb{F}_q+uv\mathbb{F}_q\). Quant. Inf. Process. 15(10) (2016)

  23. Gao, Y., Gao, J., Fu, F.-W.: Quantum codes from cyclic codes over the ring \(\mathbb{F} _q+ v_1 \mathbb{F} _q+\cdots + v_r \mathbb{F} _q\). Appl. Algebra Eng. Commun. Comput. 30, 161–174 (2019)

    Article  Google Scholar 

  24. Bag, T., Dinh, H.Q., Upadhyay, A.K., Yamaka, W.: New non-binary quantum codes from cyclic codes over product rings. IEEE Commun. Lett. 24(3), 486–490 (2019)

    Article  Google Scholar 

  25. Prakash, O., Islam, H., Patel, S., Solé, P.: New quantum codes from skew constacyclic codes over a class of non-chain rings \(R_{e, q}\). Int. J. Theoret. Phys. 60, 3334–3352 (2021)

    Article  Google Scholar 

  26. Alahmadi, A., Islam, H., Prakash, O., Solé, P., Alkenani, A., Muthana, N., Hijazi, R.: New quantum codes from constacyclic codes over a non-chain ring. Quant. Inf. Process. 20, 1–17 (2021)

    Article  MathSciNet  Google Scholar 

  27. Dinh, H.Q., López-Permouth, S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inform. Theory 50(8), 1728–1744 (2004)

    Article  MathSciNet  Google Scholar 

  28. McDonald, B.R.: Finite rings with identity. Pure Appl. Math. 28 (1974)

  29. Xu, L.X.X.: On the structure of cyclic codes over \(\mathbb{F} _q+u\mathbb{F} _q+v\mathbb{F} _q+uv\mathbb{F} _q\). Wuhan Univ. J. Nat. Sci. 16(5), 457–460 (2011)

    Article  MathSciNet  Google Scholar 

  30. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. Online available at http://www.codetables.de. Accessed on 2024-01-18 (2007)

  31. Cannon, J., Bosma, W., Fieker, C., Steel, A.: Handbook of Magma functions. Edition 2(13), 4350 (2006)

  32. Rains, E.M.: Nonbinary quantum codes. IEEE Trans. Inform. Theory 45(6), 1827–1832 (1999). https://doi.org/10.1109/18.782103

    Article  MathSciNet  Google Scholar 

  33. Séguin, G.E.: A class of 1-generator quasi-cyclic codes. IEEE Trans. Inform. Theory 50(8), 1745–1753 (2004)

    Article  MathSciNet  Google Scholar 

  34. Benjwal, S., Bhaintwal, M.: On the duals of quasi-cyclic codes and their application to quantum codes. Quantum Inf. Process. 23(4), 113 (2024)

    Article  MathSciNet  ADS  Google Scholar 

  35. Ling, S., Solé, P.: On the algebraic structure of quasi-cyclic codes I. Finite fields. IEEE Trans. Inform. Theory 47(7), 2751–2760 (2001)

    Article  MathSciNet  Google Scholar 

  36. Edel, Y.: Some good quantum twisted codes. https://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html. Accessed: 2024-01-18

  37. Dinh, H.Q., Bag, T., Upadhyay, A.K., Bandi, R., Chinnakum, W.: On the structure of cyclic codes over \(\mathbb{F} _qRS\) and applications in quantum and LCD codes constructions. IEEE Access 8, 18902–18914 (2020)

    Article  Google Scholar 

  38. Özen, M., Özzaim, N.T., İnce, H.: Quantum codes from cyclic codes over \(\mathbb{F} _3+\mu \mathbb{F}_3+\nu \mathbb{F}_3+\mu \nu \mathbb{F}_3\). In: Journal of Physics: Conference Series, vol. 766, p. 012020 (2016). IOP Publishing

  39. Islam, H., Prakash, O.: Quantum codes from the cyclic codes over \(\mathbb{F}_p[u, v, w]/\langle u^2-1,~v^2-1,~w^2-1,~uv-vu,~vw-wv,~wu-uw\rangle \). J. Appl. Math. Comput., 1 (2019)

  40. Ma, F., Gao, J., Fu, F.-W.: Constacyclic codes over the ring \(\mathbb{F}_q+ v\mathbb{F}_q+ v^2\mathbb{F}_q\) and their applications of constructing new non-binary quantum codes. Quantum Inf. Process. 17(6) (2018)

  41. Islam, H., Prakash, O.: New quantum codes from constacyclic and additive constacyclic codes. Quantum Inf. Process. 19, 1–17 (2020)

    Article  MathSciNet  Google Scholar 

  42. Dinh, H.Q., Bag, T., Upadhyay, A.K., Ashraf, M., Mohammad, G., Chinnakum, W.: Quantum codes from a class of constacyclic codes over finite commutative rings. J. Algebra Appl 19(12), 2150003 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is partially supported by Science and Engineering Research Board (SERB), India, under Grant No. MTR/2022/000542. The first author would like to thank Ministry of Human Resource Development (MHRD), India, for providing financial support.

Author information

Authors and Affiliations

Authors

Contributions

These authors contributed equally to this work.

Corresponding author

Correspondence to Raj Kumar.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that is relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benjwal, S., Bhaintwal, M. & Kumar, R. On quantum codes derived from quasi-cyclic codes over a non-chain ring. Quantum Inf Process 23, 309 (2024). https://doi.org/10.1007/s11128-024-04514-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04514-7

Keywords