Abstract
This paper presents a study on the structure of 1-generator quasi-cyclic (QC) codes over the non-chain ring \(R=\mathbb {F}_{q}+u\mathbb {F}_{q}+v\mathbb {F}_{q}+uv\mathbb {F}_{q}\), where \(u^2=v^2=0,~ uv=vu\), and \(\mathbb {F}_q\) is a finite field of cardinality \(q=p^r\); p is a prime. A minimal spanning set and size of these codes are determined. A sufficient condition for 1-generator QC codes over R to be free is given. BCH-type bounds on the minimum distance of free QC codes over R are also presented. Some optimal linear codes over \(\mathbb {F}_q\) are obtained as the Gray images of quasi-cyclic codes over R. Some characterizations of the Gray images of QC codes over R in \(\mathbb {F}_q\) and \(\mathbb {F}_q+u\mathbb {F}_q~(u^2=0)\) are done. As an application, we consider self-orthogonal subcodes of the Gray images of QC codes over R to obtain new and better quantum codes than those are available in the literature.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
No data were used for the research described in this article.
References
Hammons, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J., Solé, P.: The \(\mathbb{Z} _4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory 40(2), 301–319 (1994)
Calderbank, A.R., Sloane, N.J.: Modular and \(p\)-adic cyclic codes. Des. Codes Cryptogr. 6, 21–35 (1995)
Calderbank, A.R., Cameron, P.J., Kantor, W.M., Seidel, J.J.: \(\mathbb{Z} _4\)-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets. Proc. Lond. Math. Soc. 75(2), 436–480 (1997)
Kanwar, P., Lopez-Permouth, S.R.: Cyclic codes over the integers modulo \(p^m\). Finite Fields Appl. 3(4), 334–352 (1997)
Bonnecaze, A., Udaya, P.: Cyclic codes and self-dual codes over \(\mathbb{F} _2+u\mathbb{F} _2\). IEEE Trans. Inf. Theory 45(4), 1250–1255 (1999)
Norton, G.H., Sălăgean, A.: On the structure of linear and cyclic codes over a finite chain ring. Appl. Algebra Eng. Commun. Comput. 10, 489–506 (2000)
Kewat, P.K., Ghosh, B., Pattanayak, S.: Cyclic codes over the ring \(\mathbb{Z} _p[u,~v]/\langle u^2,~v^2,~uv-vu\rangle \). Finite Fields Appl. 34, 161–175 (2015)
Esmaeili, M., Gulliver, T.A., Secord, N.P., Mahmoud, S.A.: A link between quasi-cyclic codes and convolutional codes. IEEE Trans. Inf. Theory 44(1), 431–435 (1998)
Kasami, T.: A Gilbert-Varshamov bound for quasi-cycle codes of rate 1/2 (Corresp.). IEEE Trans. Inf. Theory 20(5), 679–679 (1974)
Greenough, P.P., Hill, R.: Optimal ternary quasi-cyclic codes. Des. Codes Cryptogr. 2(1), 81–91 (1992)
Gulliver, T.A., Bhargava, V.K.: Some best rate \(1/p\) and rate \((p-1)/p\) systematic quasi-cyclic codes over \(GF(3)\) and \(GF(4)\). IEEE Trans. Inf. Theory 38(4), 1369–1374 (1992)
Aydin, N., Ray-Chaudhuri, D.K.: Quasi-cyclic codes over \(\mathbb{Z} _4\) and some new binary codes. IEEE Trans. Inf. Theory 48(7), 2065–2069 (2002)
Bhaintwal, M., Wasan, S.K.: On quasi-cyclic codes over \(\mathbb{Z} _q\). Appl. Algebra Eng. Commun. Comput. 20(5–6), 459–480 (2009)
Siap, I., Abualrub, T., Yildiz, B.: One generator quasi-cyclic codes over \(\mathbb{F} _2+ u\mathbb{F} _2\). J. Frankl. Inst. 349(1), 284–292 (2012)
Aydin, N., Karadeniz, S., Yildiz, B.: Some new binary quasi-cyclic codes from codes over the ring \(\mathbb{F} _2+u\mathbb{F} _2+v\mathbb{F} _2+uv\mathbb{F} _2\). Appl. Algebra Eng. Commun. Comput. 24, 355–367 (2013)
Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), 2493 (1995)
Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098 (1996)
Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793 (1996)
Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.: Quantum error correction via codes over \(GF(4)\). IEEE Trans. Inform. Theory 44(4), 1369–1387 (1998)
Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inform. Theory 47(7), 3065–3072 (2001)
Guenda, K., Gulliver, T.A.: Quantum codes over rings. Int. J. Quantum Inf. 12(04), 1450020 (2014)
Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \(\mathbb{F}_q+u\mathbb{F}_q+v\mathbb{F}_q+uv\mathbb{F}_q\). Quant. Inf. Process. 15(10) (2016)
Gao, Y., Gao, J., Fu, F.-W.: Quantum codes from cyclic codes over the ring \(\mathbb{F} _q+ v_1 \mathbb{F} _q+\cdots + v_r \mathbb{F} _q\). Appl. Algebra Eng. Commun. Comput. 30, 161–174 (2019)
Bag, T., Dinh, H.Q., Upadhyay, A.K., Yamaka, W.: New non-binary quantum codes from cyclic codes over product rings. IEEE Commun. Lett. 24(3), 486–490 (2019)
Prakash, O., Islam, H., Patel, S., Solé, P.: New quantum codes from skew constacyclic codes over a class of non-chain rings \(R_{e, q}\). Int. J. Theoret. Phys. 60, 3334–3352 (2021)
Alahmadi, A., Islam, H., Prakash, O., Solé, P., Alkenani, A., Muthana, N., Hijazi, R.: New quantum codes from constacyclic codes over a non-chain ring. Quant. Inf. Process. 20, 1–17 (2021)
Dinh, H.Q., López-Permouth, S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inform. Theory 50(8), 1728–1744 (2004)
McDonald, B.R.: Finite rings with identity. Pure Appl. Math. 28 (1974)
Xu, L.X.X.: On the structure of cyclic codes over \(\mathbb{F} _q+u\mathbb{F} _q+v\mathbb{F} _q+uv\mathbb{F} _q\). Wuhan Univ. J. Nat. Sci. 16(5), 457–460 (2011)
Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. Online available at http://www.codetables.de. Accessed on 2024-01-18 (2007)
Cannon, J., Bosma, W., Fieker, C., Steel, A.: Handbook of Magma functions. Edition 2(13), 4350 (2006)
Rains, E.M.: Nonbinary quantum codes. IEEE Trans. Inform. Theory 45(6), 1827–1832 (1999). https://doi.org/10.1109/18.782103
Séguin, G.E.: A class of 1-generator quasi-cyclic codes. IEEE Trans. Inform. Theory 50(8), 1745–1753 (2004)
Benjwal, S., Bhaintwal, M.: On the duals of quasi-cyclic codes and their application to quantum codes. Quantum Inf. Process. 23(4), 113 (2024)
Ling, S., Solé, P.: On the algebraic structure of quasi-cyclic codes I. Finite fields. IEEE Trans. Inform. Theory 47(7), 2751–2760 (2001)
Edel, Y.: Some good quantum twisted codes. https://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html. Accessed: 2024-01-18
Dinh, H.Q., Bag, T., Upadhyay, A.K., Bandi, R., Chinnakum, W.: On the structure of cyclic codes over \(\mathbb{F} _qRS\) and applications in quantum and LCD codes constructions. IEEE Access 8, 18902–18914 (2020)
Özen, M., Özzaim, N.T., İnce, H.: Quantum codes from cyclic codes over \(\mathbb{F} _3+\mu \mathbb{F}_3+\nu \mathbb{F}_3+\mu \nu \mathbb{F}_3\). In: Journal of Physics: Conference Series, vol. 766, p. 012020 (2016). IOP Publishing
Islam, H., Prakash, O.: Quantum codes from the cyclic codes over \(\mathbb{F}_p[u, v, w]/\langle u^2-1,~v^2-1,~w^2-1,~uv-vu,~vw-wv,~wu-uw\rangle \). J. Appl. Math. Comput., 1 (2019)
Ma, F., Gao, J., Fu, F.-W.: Constacyclic codes over the ring \(\mathbb{F}_q+ v\mathbb{F}_q+ v^2\mathbb{F}_q\) and their applications of constructing new non-binary quantum codes. Quantum Inf. Process. 17(6) (2018)
Islam, H., Prakash, O.: New quantum codes from constacyclic and additive constacyclic codes. Quantum Inf. Process. 19, 1–17 (2020)
Dinh, H.Q., Bag, T., Upadhyay, A.K., Ashraf, M., Mohammad, G., Chinnakum, W.: Quantum codes from a class of constacyclic codes over finite commutative rings. J. Algebra Appl 19(12), 2150003 (2020)
Acknowledgements
This research is partially supported by Science and Engineering Research Board (SERB), India, under Grant No. MTR/2022/000542. The first author would like to thank Ministry of Human Resource Development (MHRD), India, for providing financial support.
Author information
Authors and Affiliations
Contributions
These authors contributed equally to this work.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflict of interest to declare that is relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Benjwal, S., Bhaintwal, M. & Kumar, R. On quantum codes derived from quasi-cyclic codes over a non-chain ring. Quantum Inf Process 23, 309 (2024). https://doi.org/10.1007/s11128-024-04514-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04514-7