Abstract
This paper proposes a magnetic field measurement scheme based on a hybrid microwave optomechanical-magnetic coupled system. The proposed sensor comprises a yttrium iron garnet sphere and an optomechanical cavity, where the spring coefficient of the cavity is parametrically modulated. The results demonstrate that the system’s response to the input signal is significantly enhanced, amplifying the weak input signal while reducing the added noise of measurement below the standard quantum limit. Consequently, this hybrid system serves as an effective amplifier, generating a stronger output signal while maintaining sensitivity nearly identical to that of the bare system. We posit that these findings may offer an efficient method for magnetic field measurement and contribute to the advancement of technology in quantum precision measurements.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.
References
Degen, C.L., Reinhard, F., Cappellaro, P.: Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017). https://doi.org/10.1103/RevModPhys.89.035002
Yuan, H.Y., Cao, Y., Kamra, A., Duine, R.A., Yan, P.: Quantum magnonics: When magnon spintronics meets quantum information science. Phys. Rep. 965, 1–74 (2022). https://doi.org/10.1016/j.physrep.2022.03.002
Rameshti, B.Z., Kusminskiy, S.V., Haigh, J.A., Usami, K., Lachance-Quirion, D., Nakamura, Y., Hu, C.-M., Tang, H.X., Bauer, G.E.W., Blanter, Y.M.: Cavity magnonics. Phys. Rep. 979, 1–61 (2022). https://doi.org/10.1016/j.physrep.2022.06.001
Wang, F., Gou, C., Xu, J., Gong, C.: Hybrid magnon-atom entanglement and magnon blockade via quantum interference. Phys. Rev. A 106, 013705 (2022). https://doi.org/10.1103/PhysRevA.106.013705
Yu, W., Wang, J., Yuan, H.Y., Xiao, J.: Prediction of attractive level crossing via a dissipative mode. Phys. Rev. Lett. 123, 227201 (2019). https://doi.org/10.1103/PhysRevLett.123.227201
Zhang, D., Wang, X.-M., Li, T.-F., Luo, X.-Q., Wu, W., Nori, F., You, J.: Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere. npj Quant. Inf. 1, 15014 (2015). https://doi.org/10.1038/npjqi.2015.14
Wolski, S.P., Lachance-Quirion, D., Tabuchi, Y., Kono, S., Noguchi, A., Usami, K., Nakamura, Y.: Dissipation-based quantum sensing of magnons with a superconducting qubit. Phys. Rev. Lett. 125, 117701 (2020). https://doi.org/10.1103/PhysRevLett.125.117701
Potts, C.A., Bittencourt, V.A.S.V., Kusminskiy, S.V., Davis, J.P.: Magnon-phonon quantum correlation thermometry. Phys. Rev. Appl. 13, 064001 (2020). https://doi.org/10.1103/PhysRevApplied.13.064001
Ebrahimi, M.S., Motazedifard, A., Harouni, M.B.: Single-quadrature quantum magnetometry in cavity electromagnonics. Phys. Rev. A 103, 062605 (2021). https://doi.org/10.1103/PhysRevA.103.062605
Peano, V., Schwefel, H.G.L., Marquardt, C., Marquardt, F.: Intracavity squeezing can enhance quantum-limited optomechanical position detection through deamplification. Phys. Rev. Lett. 115, 243603 (2015). https://doi.org/10.1103/PhysRevLett.115.243603
Clerk, A.A., Devoret, M.H., Girvin, S.M., Marquardt, F., Schoelkopf, R.J.: Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010). https://doi.org/10.1103/RevModPhys.82.1155
Xu, X., Taylor, J.M.: Squeezing in a coupled two-mode optomechanical system for force sensing below the standard quantum limit. Phys. Rev. A 90, 043848 (2014). https://doi.org/10.1103/PhysRevA.90.043848
Motazedifard, A., Bemani, F., Naderi, M.H., Roknizadeh, R., Vitali, D.: Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection. New J. Phys. 18(7), 073040 (2016). https://doi.org/10.1088/1367-2630/18/7/073040
Zhang, W.-Z., Han, Y., Xiong, B., Zhou, L.: Optomechanical force sensor in a non-markovian regime. New J. Phys. 19(8), 083022 (2017). https://doi.org/10.1088/1367-2630/aa68d9
Mason, D., Chen, J., Rossi, M., Tsaturyan, Y., Schliesser, A.: Continuous force and displacement measurement below the standard quantum limit. Nat. Phys. 15, 745–749 (2019). https://doi.org/10.1038/s41567-019-0533-5
Di Giuseppe, G., Vitali, D.: Entangled light enhances force sensing. Nat. Photonics 17, 465–466 (2023). https://doi.org/10.1038/s41566-023-01215-y
Khalili, F.Y.: Optimal configurations of filter cavity in future gravitational-wave detectors. Phys. Rev. D 81, 122002 (2010). https://doi.org/10.1103/PhysRevD.81.122002
Caniard, T., Verlot, P., Briant, T., Cohadon, P.-F., Heidmann, A.: Observation of back-action noise cancellation in interferometric and weak force measurements. Phys. Rev. Lett. 99, 110801 (2007). https://doi.org/10.1103/PhysRevLett.99.110801
Pontin, A., Biancofiore, C., Serra, E., Borrielli, A., Cataliotti, F.S., Marino, F., Prodi, G.A., Bonaldi, M., Marin, F., Vitali, D.: Frequency-noise cancellation in optomechanical systems for ponderomotive squeezing. Phys. Rev. A 89, 033810 (2014). https://doi.org/10.1103/PhysRevA.89.033810
Clerk, A.A., Marquardt, F., Jacobs, K.: Back-action evasion and squeezing of a mechanical resonator using a cavity detector. New J. Phys. 10(9), 095010 (2008). https://doi.org/10.1088/1367-2630/10/9/095010
Hertzberg, J.B., Rocheleau, T., Ndukum, T., Savva, M., Clerk, A.A., Schwab, K.C.: Back-action-evading measurements of nanomechanical motion. Nat. Phys. 6, 213–217 (2010). https://doi.org/10.1038/nphys1479
Møller, C.B., Thomas, G. Rodrigo., A. and Vasilakis, Zeuthen, E., Tsaturyan, Y., Balabas, M., Jensen, K., Schliesser, A., Hammerer, K., Polzik, E.S,: Quantum back-action-evading measurement of motion in a negative mass reference frame. Nature 547, 191–195 (2017). https://doi.org/10.1038/nature22980
Ockeloen-Korppi, C.F., Damskägg, E., Pirkkalainen, J.-M., Clerk, A.A., Woolley, M.J., Sillanpää, M.A.: Quantum backaction evading measurement of collective mechanical modes. Phys. Rev. Lett. 117, 140401 (2016). https://doi.org/10.1103/PhysRevLett.117.140401
de Lépinay, L.M., Ockeloen-Korppi, C.F., Woolley, M.J., Sillanpää, M.A.: Quantum mechanics-free subsystem with mechanical oscillators. Science 372(6542), 625–629 (2021). https://doi.org/10.1126/science.abf5389
Bariani, F., Seok, H., Singh, S., Vengalattore, M., Meystre, P.: Atom-based coherent quantum-noise cancellation in optomechanics. Phys. Rev. A 92, 043817 (2015). https://doi.org/10.1103/PhysRevA.92.043817
Wimmer, M.H., Steinmeyer, D., Hammerer, K., Heurs, M.: Coherent cancellation of backaction noise in optomechanical force measurements. Phys. Rev. A 89, 053836 (2014). https://doi.org/10.1103/PhysRevA.89.053836
Motazedifard, A., Bemani, F., Naderi, M.H., Roknizadeh, R., Vitali, D.: Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection. New J. Phys. 18(7), 073040 (2016). https://doi.org/10.1088/1367-2630/18/7/073040
Buchmann, L.F., Schreppler, S., Kohler, J., Spethmann, N., Stamper-Kurn, D.M.: Complex squeezing and force measurement beyond the standard quantum limit. Phys. Rev. Lett. 117, 030801 (2016). https://doi.org/10.1103/PhysRevLett.117.030801
Khalili, F.Y., Polzik, E.S.: Overcoming the standard quantum limit in gravitational wave detectors using spin systems with a negative effective mass. Phys. Rev. Lett. 121, 031101 (2018). https://doi.org/10.1103/PhysRevLett.121.031101
Tsang, M., Caves, C.M.: Coherent quantum-noise cancellation for optomechanical sensors. Phys. Rev. Lett. 105, 123601 (2010). https://doi.org/10.1103/PhysRevLett.105.123601
Tsang, M., Caves, C.M.: Evading quantum mechanics: Engineering a classical subsystem within a quantum environment. Phys. Rev. X 2, 031016 (2012). https://doi.org/10.1103/PhysRevX.2.031016
Allahverdi, H., Motazedifard, A., Dalafi, A., Vitali, D., Naderi, M.H.: Homodyne coherent quantum noise cancellation in a hybrid optomechanical force sensor. Phys. Rev. A 106, 023107 (2022). https://doi.org/10.1103/PhysRevA.106.023107
Bemani, F., Černotík, O., Ruppert, L., Vitali, D., Filip, R.: Force sensing in an optomechanical system with feedback-controlled in-loop light. Phys. Rev. Appl. 17, 034020 (2022). https://doi.org/10.1103/PhysRevApplied.17.034020
Motazedifard, A., Dalafi, A., Naderi, M.H.: Ultraprecision quantum sensing and measurement based on nonlinear hybrid optomechanical systems containing ultracold atoms or atomic Bose-Einstein condensate. AVS Quant. Sci. 3(2), 024701 (2021). https://doi.org/10.1116/5.0035952
Levitan, B.A., Metelmann, A., Clerk, A.A.: Optomechanics with two-phonon driving. New J. Phys. 18(9), 093014 (2016). https://doi.org/10.1088/1367-2630/18/9/093014
Motazedifard, A., Dalafi, A., Naderi, M.H.: Negative cavity photon spectral function in an optomechanical system with two parametrically-driven mechanical modes. Opt. Express 31(22), 36615–36637 (2023). https://doi.org/10.1364/OE.499409
Tabuchi, Y., Ishino, S., Ishikawa, T., Yamazaki, R., Usami, K., Nakamura, Y.: Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113, 083603 (2014). https://doi.org/10.1103/PhysRevLett.113.083603
Tabuchi, Y., Ishino, S., Noguchi, A., Ishikawa, T., Yamazaki, R., Usami, K., Nakamura, Y.: Quantum magnonics: The magnon meets the superconducting qubit. C R Phys. 17(7), 729–739 (2016). https://doi.org/10.1016/j.crhy.2016.07.009.Quantummicrowaves/Micro-ondesquantiques
Lachance-Quirion, D., Tabuchi, Y., Gloppe, A., Usami, K., Nakamura, Y.: Hybrid quantum systems based on magnonics. Appl. Phys. Express 12(7), 070101 (2019). https://doi.org/10.7567/1882-0786/ab248d
Baudenbacher, F., Fong, L.E., Holzer, J.R., Radparvar, M.: Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples. Appl. Phys. Lett. 82(20), 3487–3489 (2003)
Wan, Q.-M., Lin, Y.-H., Cong, L.-J., Yang, R.-C., Liu, H.-Y.: Quantum entanglement enhanced in hybrid cavity-magnon optomechanical systems. Results Phys. 58, 107449 (2024). https://doi.org/10.1016/j.rinp.2024.107449
Bothner, D., Yanai, S., Iniguez-Rabago, A., Yuan, M., Blanter, Y.M., Steele, G.A.: Cavity electromechanics with parametric mechanical driving. Nat. Commun. 11, 1589 (2020). https://doi.org/10.1038/s41467-020-15389-4
Szorkovszky, A., Brawley, G.A., Doherty, A.C., Bowen, W.P.: Strong thermomechanical squeezing via weak measurement. Phys. Rev. Lett. 110, 184301 (2013). https://doi.org/10.1103/PhysRevLett.110.184301
Motazedifard, A., Dalafi, A., Naderi, M.H., Roknizadeh, R.: Controllable generation of photons and phonons in a coupled bose-einstein condensate-optomechanical cavity via the parametric dynamical casimir effect. Ann. Phys. 396, 202–219 (2018). https://doi.org/10.1016/j.aop.2018.07.013
Li, J., Zhu, S.-Y., Agarwal, G.S.: Magnon-photon-phonon entanglement in cavity magnomechanics. Phys. Rev. Lett. 121, 203601 (2018). https://doi.org/10.1103/PhysRevLett.121.203601
Zhang, X., Zou, C.-L., Jiang, L., Tang, H.X.: Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113, 156401 (2014). https://doi.org/10.1103/PhysRevLett.113.156401
Motazedifard, A., Dalafi, A., Bemani, F., Naderi, M.H.: Force sensing in hybrid bose-einstein-condensate optomechanics based on parametric amplification. Phys. Rev. A 100, 023815 (2019). https://doi.org/10.1103/PhysRevA.100.023815
Li, Y., Huang, Y.Y., Zhang, X.Z., Tian, L.: Optical directional amplification in a three-mode optomechanical system. Opt. Express 25(16), 18907–18916 (2017). https://doi.org/10.1364/OE.25.018907
Walls, D.F., Milburn, G.J.: Quantum Optics, 2nd edn. Springer, Berlin (2008)
Clerk, A.A., Devoret, M.H., Girvin, S.M., Marquardt, F., Schoelkopf, R.J.: Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010). https://doi.org/10.1103/RevModPhys.82.1155
Schreppler, S., Spethmann, N., Brahms, N., Botter, T., Barrios, M., Stamper-Kurn, D.M.: Optically measuring force near the standard quantum limit. Science 344(6191), 1486–1489 (2014). https://doi.org/10.1126/science.1249850
Hertzberg, J., Rocheleau, T., Ndukum, T., Savva, M., Clerk, A., Schwab, K.: Back-action evading measurements of nanomechanical motion. Nat. Phys. (2009). https://doi.org/10.1038/nphys1479
Woolley, M.J., Clerk, A.A.: Two-mode back-action-evading measurements in cavity optomechanics. Phys. Rev. A 87, 063846 (2013). https://doi.org/10.1103/PhysRevA.87.063846
Xu, X., Taylor, J.M.: Squeezing in a coupled two-mode optomechanical system for force sensing below the standard quantum limit. Phys. Rev. A 90, 043848 (2014). https://doi.org/10.1103/PhysRevA.90.043848
Lucamarini, M., Vitali, D., Tombesi, P.: Scheme for a quantum-limited force measurement with an optomechanical device. Phys. Rev. A 74, 063816 (2006). https://doi.org/10.1103/PhysRevA.74.063816
Piergentili, P., Li, W., Natali, R., Malossi, N., Vitali, D., Giuseppe, G.D.: Two-membrane cavity optomechanics: non-linear dynamics. New J. Phys. 23(7), 073013 (2021). https://doi.org/10.1088/1367-2630/abdd6a
Wang, Z., Kong, F., Zhao, P., Huang, Z., Yu, P., Wang, Y., Shi, F., Du, J.: Picotesla magnetometry of microwave fields with diamond sensors. Sci. Adv. 8(32), 8158 (2022). https://doi.org/10.1126/sciadv.abq8158
Crescini, N., Carugno, G., Ruoso, G.: Phase-modulated cavity magnon polaritons as a precise magnetic field probe. Phys. Rev. Appl. 16, 034036 (2021). https://doi.org/10.1103/PhysRevApplied.16.034036
Kleiner, R., Koelle, D., Ludwig, F., Clarke, J.: Superconducting quantum interference devices: State of the art and applications. Proc. IEEE 92(10), 1534–1548 (2004). https://doi.org/10.1109/JPROC.2004.833655
Gallop, J.: Squids: some limits to measurement*. Supercond. Sci. Technol. 16(12), 1575 (2003). https://doi.org/10.1088/0953-2048/16/12/055
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ding, Z., Zhang, Y. Magnetic field measurement in a hybrid microwave optomechanical-magnetic coupled system. Quantum Inf Process 23, 323 (2024). https://doi.org/10.1007/s11128-024-04527-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04527-2