Abstract
In this paper, we propose a protocol for quantum secure multiparty summation and privacy sorting based on inverse quantum Fourier transform. The protocol allows multiple participants to obtain the summation and sorting of their secrets without revealing their private inputs. Each participant in the protocol encodes his/her own secret input into the phase of the d-level entangled state of n particles by means of a phase transformation operator and an inverse quantum Fourier transform. Finally, all participants perform measurements and jointly calculate the sum of all the secret data, meanwhile deriving their own rankings of the private inputs based on the final results. Compared to the existing similar quantum summation and sorting protocols, this protocol requires only a one-time particle transmission and does not require private key sequences to encrypt secret information, resulting in higher quantum efficiency. The participants can further obtain the ranking of their secret inputs by themselves. The credibility of the protocol is demonstrated in security analysis and simulation.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982). 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982), pp. 160–164 (1982)
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science. Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)
Guo, F.Z., Gao, F., Qin, S.J., Zhang, J., Wen, Q.Y.: Quantum private comparison protocol based on entanglement swapping of \(d\) -level bell states. Quantum Inf. Process. 12(8), 2793–2802 (2013). https://doi.org/10.1007/s11128-013-0536-6
Ji, Z.X., Ye, T.Y.: Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level bell states. Quantum Inf. Process. (2017). https://doi.org/10.1007/s11128-017-1628-5
Ye, C.Q., Ye, T.Y.: Circular multi-party quantum private comparison with n-level single-particle states. Int. J. Theor. Phys. 58(4), 1282–1294 (2019). https://doi.org/10.1007/s10773-019-04019-5
Ye, T.Y., Hu, J.L.: Multi-party quantum private comparison based on entanglement swapping of bell entangled states within d-level quantum system. Int. J. Theor. Phys. 60(4), 1471–1480 (2021). https://doi.org/10.1007/s10773-021-04771-7
Wu, W.Q., Guo, L.N., Xie, M.Z.: Multi-party semi-quantum private comparison based on the maximally entangled ghz-type states. Front. Phys. (2022). https://doi.org/10.3389/fphy.2022.1048325
Lian, J.Y., Li, X., Ye, T.Y.: Multi-party semiquantum private comparison of size relationship with d-dimensional bell states. EPJ Quantum Technol. (2023). https://doi.org/10.1140/epjqt/s40507-023-00167-0
Huang, W., Wen, Q.Y., Liu, B., Su, Q., Qin, S.J., Gao, F.: Quantum anonymous ranking. Phys. Rev. A 89, 032325 (2014). https://doi.org/10.1103/PhysRevA.89.032325
Luo, Q.B., Yang, G.W., She, K., Li, X.Y., Wang, Y.Q., Yang, F.: Quantum anonymous ranking with d-level single-particle states. Int. J. Softw. Inform. 8(3–4), 339–343 (2014)
Lin, S., Guo, G.D., Huang, F., Liu, X.F.: Quantum anonymous ranking based on the Chinese remainder theorem. Phys. Rev. A 93, 012318 (2016). https://doi.org/10.1103/PhysRevA.93.012318
Wang, Q.L., Li, Y.C., Yu, C.H., He, H., Zhang, K.J.: Quantum anonymous ranking and selection with verifiability. Quantum Inf. Process. 19(5), 166 (2020). https://doi.org/10.1007/s11128-020-02664-y
Li, Y.R., Jiang, D.H., Liang, X.Q.: A novel quantum anonymous ranking protocol. Quantum Inf. Process. 20(10), 342 (2021). https://doi.org/10.1007/s11128-021-03288-6
Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set Intersection, pp. 1–19. Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_1
Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to association rule mining. J. Comput. Secur. 13, 593–622 (2005). https://doi.org/10.3233/JCS-2005-13401
Shi, R.H., Mu, Y., Zhong, H., Cui, J., Zhang, S.: An efficient quantum scheme for private set intersection. Quantum Inf. Process. 15(1), 363–371 (2016). https://doi.org/10.1007/s11128-015-1165-z
Zhang, C., Long, Y.X., Sun, Z.W., Li, Q., Huang, Q.: Three-party quantum private computation of cardinalities of set intersection and union based on ghz states. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-77579-w
Liu, W., Li, Y.Z., Wang, Z.R., Li, Y.G.: A new quantum private protocol for set intersection cardinality based on a quantum homomorphic encryption scheme for toffoli gate. Entropy 25(3), 516 (2023). https://doi.org/10.3390/e25030516
Li, H.J., Shi, R.H., Jia, Q.Q.: Quantum secure multiparty computing xor protocol based on single photons and its application in quantum secure communications for intelligence agents. Physica Scripta 99(8), 085101 (2024). https://doi.org/10.1088/1402-4896/ad59d8
Shi, R.H., Fang, X.Q.: Edge-assisted quantum protocol for secure multiparty logical and its applications. Iscience (2023). https://doi.org/10.1016/j.isci.2023.106990
Shi, R.H., Yu, H.: Privacy-preserving range query quantum scheme with single photons in edge-based internet of things. IEEE Trans. Netw. Serv. Manag. 20(4), 4923–4936 (2023). https://doi.org/10.1109/TNSM.2023.3253858
Shi, R.H., Fang, X.Q.: Quantum scheme for privacy-preserving range max/min query in edge-based internet of things. IEEE Trans. Netw. Serv. Manag. (2024). https://doi.org/10.1109/TNSM.2024.3442826
Dou, Z., Wang, Y.F., Liu, Z.Q., Bi, J.G., Chen, X.B., Li, L.X.: Quantum secure multi-party computational geometry based on multi-party summation and multiplication. Quantum Sci. Technol. 9(2), 025023 (2024). https://doi.org/10.1088/2058-9565/ad34f5
Li, F.L., Luo, M., Zhu, S.X., Pang, B.B.: General quantum secure multiparty computation protocol for simultaneous summation and multiplication. Physica Scripta 99(1), 015107 (2024). https://doi.org/10.1088/1402-4896/ad1281
Hou, M., Wu, Y.: Single-photon-based quantum secure protocol for the socialist millionaires’ problem. Front. Phys. (2024). https://doi.org/10.3389/fphy.2024.1364140
Zhang, Y., Zhang, L., Zhang, K.J., Wang, W.J., Hou, K.C.: A new quantum-inspired solution to blind millionaires’ problem. Quantum Inf. Process. 22(1), 80 (2023). https://doi.org/10.1007/s11128-023-03828-2
Lu, Y.H., Ding, G.Y.: A novel quantum security multi-party extremum protocol in a d-dimensional quantum system. Physica Scripta 99(9), 095111 (2024). https://doi.org/10.1088/1402-4896/ad6aee
Kong, H.X., Jia, H.Y., Wu, X., Li, G.Q.: Robust quantum secure multiparty computation protocols for minimum value calculation in collective noises and their simulation. Int. J. Theor. Phys. 62(8), 172 (2023). https://doi.org/10.1007/s10773-023-05429-2
Shi, R.H., Li, Y.F.: Quantum secret permutating protocol. IEEE Trans. Comput. 72(5), 1223–1235 (2023). https://doi.org/10.1109/TC.2022.3207121
Heinrich, S.: Quantum summation with an application to integration. J. Complex. 18(1), 1–50 (2002). https://doi.org/10.1006/jcom.2001.0629
Bell, J.S.: On the Einstein Podolsky Rosen paradox. Phys. Physique Fizika 1, 195–200 (1964). https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going Beyond Bell’s Theorem, pp. 69–72. Springer, Berlin (1989). https://doi.org/10.48550/arXiv.0712.0921
Du, J.Z., Chen, X.B., Wen, Q.Y., Zhu, F.C.: Secure multiparty quantum summation. Acta Physica Sinica Chin. Ed. 56, 6214–6219 (2007)
Chen, X.B., Xu, G., Yang, Y.X., Wen, Q.Y.: An efficient protocol for the secure multi-party quantum summation. Int. J. Theor. Phys. 49(11), 2793–2804 (2010). https://doi.org/10.1007/s10773-010-0472-5
Borras, A., Plastino, A.R., Batle, J., Zander, C., Casas, M., Plastino, A.: Multiqubit systems: highly entangled states and entanglement distribution. J. Phys. A Math. Theor. 40(44), 13407 (2007). https://doi.org/10.1088/1751-8113/40/44/018
Zhang, C., Sun, Z.W., Huang, X., Long, D.Y.: Three-party quantum summation without a trusted third party. Int. J. Quantum Inf. 13(02), 1550011 (2015). https://doi.org/10.1142/S0219749915500112
Shi, R.H., Mu, Y., Zhong, H., Cui, J., Zhang, S.: Secure multiparty quantum computation for summation and multiplication. Sci. Rep. (2016). https://doi.org/10.1038/srep19655
Yang, H.Y., Ye, T.Y.: Secure multi-party quantum summation based on quantum Fourier transform. Quantum Inf. Process. 17(6), 129 (2018). https://doi.org/10.1007/s11128-018-1890-1
Zhang, C., Razavi, M., Sun, Z.W., Situ, H.Z.: Improvements on “secure multi-party quantum summation based on quantum Fourier transform.". Quantum Inf. Process. 18(11), 336 (2019). https://doi.org/10.1007/s11128-019-2449-5
Duan, M.Y.: Multi-party quantum summation within a d-level quantum system. Int. J. Theor. Phys. 59(5), 1638–1643 (2020). https://doi.org/10.1007/s10773-020-04431-2
Sutradhar, K., Om, H.: A generalized quantum protocol for secure multiparty summation. IEEE Trans. Circuits Syst. II Express Briefs 67(12), 2978–2982 (2020). https://doi.org/10.1109/TCSII.2020.2989447
Ye, T.Y., Hu, J.L.: Quantum secure multiparty summation based on the phase shifting operation of d-level quantum system and its application. Int. J. Theor. Phys. 60(3), 819–827 (2021). https://doi.org/10.1007/s10773-020-04700-0
Ye, T.Y., Xu, T.J.: A lightweight three-user secure quantum summation protocol without a third party based on single-particle states. Quantum Inf. Process. (2022). https://doi.org/10.1007/s11128-022-03652-0
Wu, W.Q., Xie, M.Z.: Quantum secure multi-party summation using single photons. Entropy 25(4), 590 (2023). https://doi.org/10.3390/e25040590
Wang, J.T., Li, X., Ye, T.Y.: A quantum secure multi-party summation protocol based on one-direction quantum walks on a circle. Scientia Sinica Physica, Mechanica & Astronomica 54(4), 240311 (2024). https://doi.org/10.1360/SSPMA-2023-0447
Hu, J.L., Ye, T.Y.: Three-party secure semiquantum summation without entanglement among quantum user and classical users. Int. J. Theor. Phys. (2022). https://doi.org/10.1007/s10773-022-05158-y
Ye, T.Y., Xu, T.J., Geng, M.J., Chen, Y.: Two-party secure semiquantum summation against the collective-dephasing noise. Quantum Inf. Pocess. (2022). https://doi.org/10.1007/s11128-022-03459-z
Zhang, C., Huang, Q., Long, Y.X., Sun, Z.W.: Secure three-party semi-quantum summation using single photons. Int. J. Theor. Phys. 60(9), 3478–3487 (2021). https://doi.org/10.1007/s10773-021-04921-x
Pan, H.M.: Cryptanalysis and improvement of three-party semi-quantum summation using single photons. Int. J. Theor. Phys. (2022). https://doi.org/10.1007/s10773-022-05101-1
Lian, J.Y., Ye, T.Y.: Hybrid protocols for multi-party semiquantum private comparison, multiplication and summation without a pre-shared key based on d-dimensional single-particle states. EPJ Quantum Technol. 11(1), 17 (2024). https://doi.org/10.1140/epjqt/s40507-024-00228-y
Ji, Z.X., Zhang, H.G., Wang, H.Z., Wu, F.S., Jia, J.W., Wu, W.Q.: Quantum protocols for secure multi-party summation. Quantum Inf. Process. (2019). https://doi.org/10.1007/s11128-018-2141-1
Yi, X., Cao, C., Fan, L., Zhang, R.: Quantum secure multi-party summation protocol based on blind matrix and quantum Fourier transform. Quantum Inf. Process. (2021). https://doi.org/10.1007/s11128-021-03183-0
Gan, Z.G.: Improvement of quantum protocols for secure multi-party summation. Int. J. Theor. Phys. 59(10), 3086–3092 (2020). https://doi.org/10.1007/s10773-020-04555-5
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667
Cabello, A.: Quantum key distribution in the holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000). https://doi.org/10.1103/PhysRevLett.85.5635
Yan, X.Y., Zhou, N.R., Gong, L.H., Wang, Y.Q., Wen, X.J.: High-dimensional quantum key distribution based on qudits transmission with quantum Fourier transform. Quantum Inf. Process. 18(9), 271 (2019). https://doi.org/10.1007/s11128-019-2368-5
Acknowledgements
This work was supported by the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515011985) and the National Natural Science Foundation of China (Grant No. 61902132).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no Conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Li, X., Xiong, Y. & Zhang, C. Secure multiparty quantum computation for summation and data sorting. Quantum Inf Process 23, 321 (2024). https://doi.org/10.1007/s11128-024-04528-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04528-1