Skip to main content

Advertisement

Log in

Secure multiparty quantum computation for summation and data sorting

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a protocol for quantum secure multiparty summation and privacy sorting based on inverse quantum Fourier transform. The protocol allows multiple participants to obtain the summation and sorting of their secrets without revealing their private inputs. Each participant in the protocol encodes his/her own secret input into the phase of the d-level entangled state of n particles by means of a phase transformation operator and an inverse quantum Fourier transform. Finally, all participants perform measurements and jointly calculate the sum of all the secret data, meanwhile deriving their own rankings of the private inputs based on the final results. Compared to the existing similar quantum summation and sorting protocols, this protocol requires only a one-time particle transmission and does not require private key sequences to encrypt secret information, resulting in higher quantum efficiency. The participants can further obtain the ranking of their secret inputs by themselves. The credibility of the protocol is demonstrated in security analysis and simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982). 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982), pp. 160–164 (1982)

  2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science. Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)

  3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  4. Guo, F.Z., Gao, F., Qin, S.J., Zhang, J., Wen, Q.Y.: Quantum private comparison protocol based on entanglement swapping of \(d\) -level bell states. Quantum Inf. Process. 12(8), 2793–2802 (2013). https://doi.org/10.1007/s11128-013-0536-6

    Article  ADS  MathSciNet  Google Scholar 

  5. Ji, Z.X., Ye, T.Y.: Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level bell states. Quantum Inf. Process. (2017). https://doi.org/10.1007/s11128-017-1628-5

    Article  MathSciNet  Google Scholar 

  6. Ye, C.Q., Ye, T.Y.: Circular multi-party quantum private comparison with n-level single-particle states. Int. J. Theor. Phys. 58(4), 1282–1294 (2019). https://doi.org/10.1007/s10773-019-04019-5

    Article  MathSciNet  Google Scholar 

  7. Ye, T.Y., Hu, J.L.: Multi-party quantum private comparison based on entanglement swapping of bell entangled states within d-level quantum system. Int. J. Theor. Phys. 60(4), 1471–1480 (2021). https://doi.org/10.1007/s10773-021-04771-7

    Article  MathSciNet  Google Scholar 

  8. Wu, W.Q., Guo, L.N., Xie, M.Z.: Multi-party semi-quantum private comparison based on the maximally entangled ghz-type states. Front. Phys. (2022). https://doi.org/10.3389/fphy.2022.1048325

    Article  Google Scholar 

  9. Lian, J.Y., Li, X., Ye, T.Y.: Multi-party semiquantum private comparison of size relationship with d-dimensional bell states. EPJ Quantum Technol. (2023). https://doi.org/10.1140/epjqt/s40507-023-00167-0

    Article  Google Scholar 

  10. Huang, W., Wen, Q.Y., Liu, B., Su, Q., Qin, S.J., Gao, F.: Quantum anonymous ranking. Phys. Rev. A 89, 032325 (2014). https://doi.org/10.1103/PhysRevA.89.032325

    Article  ADS  Google Scholar 

  11. Luo, Q.B., Yang, G.W., She, K., Li, X.Y., Wang, Y.Q., Yang, F.: Quantum anonymous ranking with d-level single-particle states. Int. J. Softw. Inform. 8(3–4), 339–343 (2014)

    Google Scholar 

  12. Lin, S., Guo, G.D., Huang, F., Liu, X.F.: Quantum anonymous ranking based on the Chinese remainder theorem. Phys. Rev. A 93, 012318 (2016). https://doi.org/10.1103/PhysRevA.93.012318

    Article  ADS  Google Scholar 

  13. Wang, Q.L., Li, Y.C., Yu, C.H., He, H., Zhang, K.J.: Quantum anonymous ranking and selection with verifiability. Quantum Inf. Process. 19(5), 166 (2020). https://doi.org/10.1007/s11128-020-02664-y

    Article  ADS  MathSciNet  Google Scholar 

  14. Li, Y.R., Jiang, D.H., Liang, X.Q.: A novel quantum anonymous ranking protocol. Quantum Inf. Process. 20(10), 342 (2021). https://doi.org/10.1007/s11128-021-03288-6

    Article  ADS  MathSciNet  Google Scholar 

  15. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set Intersection, pp. 1–19. Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_1

    Book  Google Scholar 

  16. Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to association rule mining. J. Comput. Secur. 13, 593–622 (2005). https://doi.org/10.3233/JCS-2005-13401

    Article  Google Scholar 

  17. Shi, R.H., Mu, Y., Zhong, H., Cui, J., Zhang, S.: An efficient quantum scheme for private set intersection. Quantum Inf. Process. 15(1), 363–371 (2016). https://doi.org/10.1007/s11128-015-1165-z

    Article  ADS  MathSciNet  Google Scholar 

  18. Zhang, C., Long, Y.X., Sun, Z.W., Li, Q., Huang, Q.: Three-party quantum private computation of cardinalities of set intersection and union based on ghz states. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-77579-w

    Article  Google Scholar 

  19. Liu, W., Li, Y.Z., Wang, Z.R., Li, Y.G.: A new quantum private protocol for set intersection cardinality based on a quantum homomorphic encryption scheme for toffoli gate. Entropy 25(3), 516 (2023). https://doi.org/10.3390/e25030516

    Article  ADS  MathSciNet  Google Scholar 

  20. Li, H.J., Shi, R.H., Jia, Q.Q.: Quantum secure multiparty computing xor protocol based on single photons and its application in quantum secure communications for intelligence agents. Physica Scripta 99(8), 085101 (2024). https://doi.org/10.1088/1402-4896/ad59d8

    Article  Google Scholar 

  21. Shi, R.H., Fang, X.Q.: Edge-assisted quantum protocol for secure multiparty logical and its applications. Iscience (2023). https://doi.org/10.1016/j.isci.2023.106990

    Article  Google Scholar 

  22. Shi, R.H., Yu, H.: Privacy-preserving range query quantum scheme with single photons in edge-based internet of things. IEEE Trans. Netw. Serv. Manag. 20(4), 4923–4936 (2023). https://doi.org/10.1109/TNSM.2023.3253858

    Article  Google Scholar 

  23. Shi, R.H., Fang, X.Q.: Quantum scheme for privacy-preserving range max/min query in edge-based internet of things. IEEE Trans. Netw. Serv. Manag. (2024). https://doi.org/10.1109/TNSM.2024.3442826

    Article  Google Scholar 

  24. Dou, Z., Wang, Y.F., Liu, Z.Q., Bi, J.G., Chen, X.B., Li, L.X.: Quantum secure multi-party computational geometry based on multi-party summation and multiplication. Quantum Sci. Technol. 9(2), 025023 (2024). https://doi.org/10.1088/2058-9565/ad34f5

    Article  ADS  Google Scholar 

  25. Li, F.L., Luo, M., Zhu, S.X., Pang, B.B.: General quantum secure multiparty computation protocol for simultaneous summation and multiplication. Physica Scripta 99(1), 015107 (2024). https://doi.org/10.1088/1402-4896/ad1281

    Article  ADS  Google Scholar 

  26. Hou, M., Wu, Y.: Single-photon-based quantum secure protocol for the socialist millionaires’ problem. Front. Phys. (2024). https://doi.org/10.3389/fphy.2024.1364140

    Article  Google Scholar 

  27. Zhang, Y., Zhang, L., Zhang, K.J., Wang, W.J., Hou, K.C.: A new quantum-inspired solution to blind millionaires’ problem. Quantum Inf. Process. 22(1), 80 (2023). https://doi.org/10.1007/s11128-023-03828-2

    Article  ADS  MathSciNet  Google Scholar 

  28. Lu, Y.H., Ding, G.Y.: A novel quantum security multi-party extremum protocol in a d-dimensional quantum system. Physica Scripta 99(9), 095111 (2024). https://doi.org/10.1088/1402-4896/ad6aee

    Article  Google Scholar 

  29. Kong, H.X., Jia, H.Y., Wu, X., Li, G.Q.: Robust quantum secure multiparty computation protocols for minimum value calculation in collective noises and their simulation. Int. J. Theor. Phys. 62(8), 172 (2023). https://doi.org/10.1007/s10773-023-05429-2

    Article  MathSciNet  Google Scholar 

  30. Shi, R.H., Li, Y.F.: Quantum secret permutating protocol. IEEE Trans. Comput. 72(5), 1223–1235 (2023). https://doi.org/10.1109/TC.2022.3207121

    Article  Google Scholar 

  31. Heinrich, S.: Quantum summation with an application to integration. J. Complex. 18(1), 1–50 (2002). https://doi.org/10.1006/jcom.2001.0629

    Article  MathSciNet  Google Scholar 

  32. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Phys. Physique Fizika 1, 195–200 (1964). https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195

    Article  MathSciNet  Google Scholar 

  33. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going Beyond Bell’s Theorem, pp. 69–72. Springer, Berlin (1989). https://doi.org/10.48550/arXiv.0712.0921

    Book  Google Scholar 

  34. Du, J.Z., Chen, X.B., Wen, Q.Y., Zhu, F.C.: Secure multiparty quantum summation. Acta Physica Sinica Chin. Ed. 56, 6214–6219 (2007)

    Article  MathSciNet  Google Scholar 

  35. Chen, X.B., Xu, G., Yang, Y.X., Wen, Q.Y.: An efficient protocol for the secure multi-party quantum summation. Int. J. Theor. Phys. 49(11), 2793–2804 (2010). https://doi.org/10.1007/s10773-010-0472-5

    Article  MathSciNet  Google Scholar 

  36. Borras, A., Plastino, A.R., Batle, J., Zander, C., Casas, M., Plastino, A.: Multiqubit systems: highly entangled states and entanglement distribution. J. Phys. A Math. Theor. 40(44), 13407 (2007). https://doi.org/10.1088/1751-8113/40/44/018

    Article  ADS  MathSciNet  Google Scholar 

  37. Zhang, C., Sun, Z.W., Huang, X., Long, D.Y.: Three-party quantum summation without a trusted third party. Int. J. Quantum Inf. 13(02), 1550011 (2015). https://doi.org/10.1142/S0219749915500112

    Article  MathSciNet  Google Scholar 

  38. Shi, R.H., Mu, Y., Zhong, H., Cui, J., Zhang, S.: Secure multiparty quantum computation for summation and multiplication. Sci. Rep. (2016). https://doi.org/10.1038/srep19655

    Article  Google Scholar 

  39. Yang, H.Y., Ye, T.Y.: Secure multi-party quantum summation based on quantum Fourier transform. Quantum Inf. Process. 17(6), 129 (2018). https://doi.org/10.1007/s11128-018-1890-1

    Article  ADS  MathSciNet  Google Scholar 

  40. Zhang, C., Razavi, M., Sun, Z.W., Situ, H.Z.: Improvements on “secure multi-party quantum summation based on quantum Fourier transform.". Quantum Inf. Process. 18(11), 336 (2019). https://doi.org/10.1007/s11128-019-2449-5

    Article  ADS  MathSciNet  Google Scholar 

  41. Duan, M.Y.: Multi-party quantum summation within a d-level quantum system. Int. J. Theor. Phys. 59(5), 1638–1643 (2020). https://doi.org/10.1007/s10773-020-04431-2

    Article  MathSciNet  Google Scholar 

  42. Sutradhar, K., Om, H.: A generalized quantum protocol for secure multiparty summation. IEEE Trans. Circuits Syst. II Express Briefs 67(12), 2978–2982 (2020). https://doi.org/10.1109/TCSII.2020.2989447

    Article  Google Scholar 

  43. Ye, T.Y., Hu, J.L.: Quantum secure multiparty summation based on the phase shifting operation of d-level quantum system and its application. Int. J. Theor. Phys. 60(3), 819–827 (2021). https://doi.org/10.1007/s10773-020-04700-0

    Article  MathSciNet  Google Scholar 

  44. Ye, T.Y., Xu, T.J.: A lightweight three-user secure quantum summation protocol without a third party based on single-particle states. Quantum Inf. Process. (2022). https://doi.org/10.1007/s11128-022-03652-0

    Article  MathSciNet  Google Scholar 

  45. Wu, W.Q., Xie, M.Z.: Quantum secure multi-party summation using single photons. Entropy 25(4), 590 (2023). https://doi.org/10.3390/e25040590

    Article  ADS  MathSciNet  Google Scholar 

  46. Wang, J.T., Li, X., Ye, T.Y.: A quantum secure multi-party summation protocol based on one-direction quantum walks on a circle. Scientia Sinica Physica, Mechanica & Astronomica 54(4), 240311 (2024). https://doi.org/10.1360/SSPMA-2023-0447

    Article  ADS  Google Scholar 

  47. Hu, J.L., Ye, T.Y.: Three-party secure semiquantum summation without entanglement among quantum user and classical users. Int. J. Theor. Phys. (2022). https://doi.org/10.1007/s10773-022-05158-y

    Article  MathSciNet  Google Scholar 

  48. Ye, T.Y., Xu, T.J., Geng, M.J., Chen, Y.: Two-party secure semiquantum summation against the collective-dephasing noise. Quantum Inf. Pocess. (2022). https://doi.org/10.1007/s11128-022-03459-z

    Article  Google Scholar 

  49. Zhang, C., Huang, Q., Long, Y.X., Sun, Z.W.: Secure three-party semi-quantum summation using single photons. Int. J. Theor. Phys. 60(9), 3478–3487 (2021). https://doi.org/10.1007/s10773-021-04921-x

    Article  Google Scholar 

  50. Pan, H.M.: Cryptanalysis and improvement of three-party semi-quantum summation using single photons. Int. J. Theor. Phys. (2022). https://doi.org/10.1007/s10773-022-05101-1

    Article  MathSciNet  Google Scholar 

  51. Lian, J.Y., Ye, T.Y.: Hybrid protocols for multi-party semiquantum private comparison, multiplication and summation without a pre-shared key based on d-dimensional single-particle states. EPJ Quantum Technol. 11(1), 17 (2024). https://doi.org/10.1140/epjqt/s40507-024-00228-y

    Article  ADS  Google Scholar 

  52. Ji, Z.X., Zhang, H.G., Wang, H.Z., Wu, F.S., Jia, J.W., Wu, W.Q.: Quantum protocols for secure multi-party summation. Quantum Inf. Process. (2019). https://doi.org/10.1007/s11128-018-2141-1

    Article  MathSciNet  Google Scholar 

  53. Yi, X., Cao, C., Fan, L., Zhang, R.: Quantum secure multi-party summation protocol based on blind matrix and quantum Fourier transform. Quantum Inf. Process. (2021). https://doi.org/10.1007/s11128-021-03183-0

    Article  MathSciNet  Google Scholar 

  54. Gan, Z.G.: Improvement of quantum protocols for secure multi-party summation. Int. J. Theor. Phys. 59(10), 3086–3092 (2020). https://doi.org/10.1007/s10773-020-04555-5

    Article  MathSciNet  Google Scholar 

  55. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667

    Book  Google Scholar 

  56. Cabello, A.: Quantum key distribution in the holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000). https://doi.org/10.1103/PhysRevLett.85.5635

    Article  ADS  Google Scholar 

  57. Yan, X.Y., Zhou, N.R., Gong, L.H., Wang, Y.Q., Wen, X.J.: High-dimensional quantum key distribution based on qudits transmission with quantum Fourier transform. Quantum Inf. Process. 18(9), 271 (2019). https://doi.org/10.1007/s11128-019-2368-5

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515011985) and the National Natural Science Foundation of China (Grant No. 61902132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai Zhang.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xiong, Y. & Zhang, C. Secure multiparty quantum computation for summation and data sorting. Quantum Inf Process 23, 321 (2024). https://doi.org/10.1007/s11128-024-04528-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04528-1

Keywords