Abstract
Hyper-parallel quantum computation offers irreplaceable advantages in quantum information processing (QIP). In this article, based on the scattering property of photons off emitters coupled to one-dimensional (1D) waveguides, we propose three heralded schemes for implementing hyper-controlled-not (hyper-CNOT) gates on two-photon systems. The four qubits of our hyper-CNOT gates are encoded on the spatial-mode and the polarization degrees of freedom (DOFs) of two-photon systems. In our schemes, the faulty scattering events between photons and quantum emitters caused by system imperfections can be detected and discarded. Besides, no auxiliary photons are needed during the process, reducing the operation time and resource consumption in QIP. We also discuss the success probabilities and fidelities of our schemes, concluding that our schemes may be feasible under current technology.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
No datasets were generated or analyzed during the current study.
References
Ekert, A., Jozsa, R.: Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys. 68, 733 (1996)
Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)
Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64, 022307 (2001)
Gisin, N., Thew, R.: Quantum communication. Nat. Photon. 1, 165 (2007)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum Metrology. Phys. Rev. Lett. 96, 010401 (2006)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015 (1995)
Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)
Zhang, J., Vala, J., Sastry, S., Whaley, K.B.: Exact Two-qubit Universal Quantum Circuit. Phys. Rev. Lett. 91, 027903 (2003)
Niskanen, A.O., Vartiainen, J.J., Salomaa, M.M.: Optimal multiqubit operations for Josephson charge qubits. Phys. Rev. Lett. 90, 197901 (2003)
Yamamoto, T., Pashkin, Y.A., Astafiev, O., Nakamura, Y., Tsai, J.S.: Demonstration of conditional gate operation using superconducting charge qubits. Nature 425, 941 (2003)
DiCarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D.I., Majer, J., Blais, A., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Demonstration of two qubit algorithms with a superconducting quantum processor. Nature 460, 240 (2009)
Neeley, M., Bialczak, R.C., Lenander, M., Lucero, E., Mariantoni, M., O’connell, A.D., Sank, D., Wang, H., Weides, M., Wenner, J., et al.: Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570 (2010)
Romero, G., Ballester, D., Wang, Y.M., Scarani, V., Solano, E.: Ultrafast quantum gates in circuit QED. Phys. Rev. Lett. 108, 120501 (2012)
Barends, R., Kelly, J., Megrant, A., Veitia, A., Sank, D., Jeffrey, E., White, T.C., Mutus, J., Fowler, A.G., Campbell, B., et al.: Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500 (2014)
Hua, M., Tao, M.J., Deng, F.G., Long, G.L.: One-step resonant controlled-phase gate on distant transmon qutrits in different 1D superconducting resonators. Sci. Rep. 5, 14541 (2015)
Jelezko, F., Gaebel, T., Popa, I., Domhan, M., Gruber, A., Wrachtrup, J.: Observation of Coherent Oscillation of a Single Nuclear Spin and Realization of a Two-Qubit Conditional Quantum Gate. Phys. Rev. Lett. 93, 130501 (2004)
Togan, E., Chu, Y., Trifonov, A.S., Jiang, L., Maze, J., Childress, L., Dutt, M.V.G., Sørensen, A.S., Hemmer, P.R., Zibrov, A.S., Lukin, M.D.: Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730 (2010)
Wei, H.R., Deng, F.G.: Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities. Phys. Rev. A 88, 042323 (2013)
Wang, T.J., Wang, C.: Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator. Phys. Rev. A 90, 052310 (2014)
Wei, H.R., Long, G.L.: Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities. Sci. Rep. 5, 12918 (2015)
Eisert, J., Jacobs, K., Papadopoulos, P., Plenio, M.B.: Optimal local implementation of nonlocal quantum gates. Phys. Rev. A 62, 052317 (2000)
Tan, T.R., Gaebler, J.P., Lin, Y., Wan, Y., Bowler, R., Leibfried, D., Wineland, D.J.: Multi-element logic gates for trapped-ion qubits. Nature 528, 380 (2015)
Long, G.L., Xiao, L.: Experimental realization of a fetching algorithm in a 7-qubit NMR spin Liouville space computer. J. Chem. Phys. 119, 8473 (2003)
Jones, J.A., Mosca, M., Hansen, R.H.: Implementation of a quantum search algorithm on a quantum computer. Nature 393, 344 (1998)
Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)
Xin, T., Hao, L., Hou, S.Y., Feng, G.R., Long, G.L.: Preparation of pseudo-pure states for NMR quantum computing with one ancillary qubit. Sci. China-Phys. Mech. Astron. 62, 960312 (2019)
Li, Y., Aolita, L., Chang, D.E., Kwek, L.C.: Robust-fidelity atom-photon entangling gates in the weak-coupling regime. Phys. Rev. Lett. 109, 160504 (2012)
Song, G.Z., Guo, J.L., Liu, Q., Wei, H., Long, G.L.: Heralded quantum gates for hybrid systems via waveguide-mediated photon scattering. Phys. Rev. A 104, 012608 (2021)
Song, G.Z., Tao, M.J., Qiu, J., Wei, H.R.: Quantum entanglement creation based on quantum scattering in one-dimensional waveguides. Phys. Rev. A 106, 032416 (2022)
Song, G.Z., Guo, J.L., Qiu, J., Wei, H.R., Tao, M.J., Long, G.L.: Implementations of heralded solid-state SWAP and \(\sqrt{SWAP}\) sates through waveguide-assisted interactions. Ann. Phys. 534, 2100373 (2022)
Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)
Li, X., Wu, Y., Steel, D., Gammon, D., Stievater, T.H., Katzer, D.S., Park, D., Piermarocchi, C., Sham, L.J.: An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809 (2003)
Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)
Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dot-microcavity coupled system. Phys. Rev. A 87, 062337 (2013)
Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)
Han, Y.H., Cao, C., Fan, L., Zhang, R.: Heralded high-fidelity quantum hyper-CNOT gates assisted by charged quantum dots inside single-sided optical microcavities. Opt. Express 29, 20045 (2021)
Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)
O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-not gate. Nature 426, 264 (2003)
Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-not gate. Phys. Rev. Lett. 93, 250502 (2004)
Nielsen, M.A.: Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004)
Shi, Y.: Both toffoli and controlled-NOT need little help to do universal quantum computing. Quantum Inf. Comput. 3, 84 (2003)
Liu, Y., Long, G.L., Sun, Y.: Analytic one-bit and CNOT gate constructions of general n-qubit controlled gates. Int. J. Quantum Inf. 6, 447 (2008)
Shende, V.V., Markov, I.L.: On the CNOT-cost of toffoli gates. Quantum Inf. Comput. 9, 461 (2009)
Ren, B.C., Wei, H.R., Deng, F.G.: Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity. Laser Phys. Lett. 10, 095202 (2013)
Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4, 4623 (2014)
Ren, B.C., Wang, G.Y., Deng, F.G.: Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime. Phys. Rev. A 91, 032328 (2015)
Wang, G.Y., Li, T., Ai, Q., et al.: Faithful entanglement purification for high-capacity quantum communication with two-photon four-qubit systems. Phys. Rev. Appl. 10, 054058 (2018)
Qi, J., Li, K., Ang, Z.Y., et al.: Error identification entanglement purification for stationary system using high-dimensional entanglement. Phys. Rev. A. 109, 042423 (2024)
Ren, B.C., Deng, F.: Robust hyperparallel photonic quantum entangling gate with cavity QED. Opt. Express 25, 10863 (2017)
Wei, H.R., Liu, W.Q., Chen, N.Y.: Implementing a two-photon three-degrees-of-freedom hyper-parallel controlled phase flip gate through cavity-assisted interactions. Ann. Phys. 532, 1900578 (2020)
Du, F.F., Fan, G., Ren, X.M.: Deterministic hyperparallel control gates with weak Kerr effects. Adv. Quantum Technol. 6, 2300201 (2023)
Akimov, A.V., Mukherjee, A., Yu, C.L., Chang, D.E., Zibrov, A.S., Hemmer, P.R., Park, H., Lukin, M.D.: Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402 (2007)
Chang, D.E., Sørensen, A.S., Demler, E.A., Lukin, M.D.: A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807 (2007)
Bajcsy, M., Hofferberth, S., Balic, V., Peyronel, T., Hafezi, M., Zibrov, A.S., Vuletic, V., Lukin, M.D.: Efficient All-Optical Switching Using Slow Light within a Hollow Fiber. Phys. Rev. Lett. 102, 203902 (2009)
Vetsch, E., Reitz, D., Sagué, G., Schmidt, R., Dawkins, S.T., Rauschenbeutel, A.: Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett. 104, 203603 (2010)
Okaba, S., Takano, T., Benabid, F., Bradley, T., Vincetti, L., Maizelis, Z., Yampol’skii, V., Nori, F., Katori, H.: Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre. Nat. Commun. 5, 4096 (2014)
Gouraud, B., Maxein, D., Nicolas, A., Morin, O., Laurat, J.: Demonstration of a memory for tightly guided light in an optical nanofiber. Phys. Rev. Lett. 114, 180503 (2015)
Sørensen, H.L., Béguin, J.B., Kluge, K.W., Iakoupov, I., Sørensen, A.S., Müller, J.H., Polzik, E.S., Appel, J.: Coherent backscattering of light off one-dimensional atomic strings. Phys. Rev. Lett. 117, 133604 (2016)
Cheng, M.T., Xu, J.P., Agarwal, G.S.: Waveguide transport mediated by strong coupling with atoms. Phys. Rev. A 95, 053807 (2017)
Song, G.Z., Munro, E., Nie, W., Deng, F.G., Ang, G.J.Y., Kwek, L.C.: Photon scattering by an atomic ensemble coupled to a one-dimensional nanophotonic waveguide. Phys. Rev. A 96, 043872 (2017)
Wang, Z.H., Du, L., Li, Y., Liu, Y.: Phase-controlled single-photon nonreciprocal transmission in a one-dimensional waveguide. Phys. Rev. A 100, 053809 (2019)
Goban, A., Hung, C.L., Yu, S.P., Hood, J.D., Muniz, J.A., Lee, J.H., Martin, M.J., McClung, A.C., Choi, K.S., Chang, D.E., Painter, O., Kimble, H.J.: Atom-light interactions in photonic crystals. Nat. Commun. 5, 3808 (2014)
Douglas, J.S., Habibian, H., Hung, C.L., Gorshkov, A.V., Kimble, H.J., Chang, D.E.: Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photon. 9, 326 (2015)
González-Tudela, A., Hung, C.L., Chang, D.E., Cirac, J.I., Kimble, H.J.: Subwavelength vacuum lattices and atom-atom interactions in two-dimensional photonic crystals. Nat. Photon. 9, 320 (2015)
Song, G.Z., Munro, E., Nie, W., Kwek, L.C., Deng, F.G., Long, G.L.: Photon transport mediated by an atomic chain trapped along a photonic crystal waveguide. Phys. Rev. A 98, 023814 (2018)
Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)
Lalumière, K., Sanders, B.C., van Loo, A.F., Fedorov, A., Wallraff, A., Blais, A.: Input-output theory for waveguide QED with an ensemble of inhomogeneous atoms. Phys. Rev. A 88, 043806 (2013)
Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y.X., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 1, 718 (2017)
Sundaresan, N.M., Lundgren, R., Zhu, G., Gorshkov, A.V., Houck, A.A.: Interacting qubit-photon bound states with superconducting circuits. Phys. Rev. X 9, 011021 (2019)
Song, G.Z., Kwek, L.C., Deng, F.G., Long, G.L.: Microwave transmission through an artificial atomic chain coupled to a superconducting photonic crystal. Phys. Rev. A 99, 043830 (2019)
Babinec, T.M., Hausmann, B.J.M., Khan, M., Zhang, Y., Maze, J.R., Hemmer, P.R., Lončar, M.: A diamond nanowire single-photon source. Nat. Nanotechnol. 5, 195 (2010)
Clevenson, H., Trusheim, M.E., Teale, C., SchrSöder, T., Braje, D., Englund, D.: Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide. Nat. Phys. 11, 393 (2015)
Sipahigil, A., Evans, R.E., Sukachev, D.D., Burek, M.J., Borregaard, J., Bhaskar, M.K., Nguyen, C.T., Pacheco, J.L., Atikian, H.A., Meuwly, C., et al.: An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847 (2016)
Zheng, H., Gauthier, D.J., Baranger, H.U.: Waveguide-QED-based photonic quantum computation. Phys. Rev. Lett. 111, 090502 (2013)
Waks, E., Vuckovic, J.: Dipole induced transparency in drop-filter cavity-waveguide systems. Phys. Rev. Lett. 96, 153601 (2006)
Zhou, L., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101, 100501 (2008)
Koshino, K., Ishizaka, S., Nakamura, Y.: Deterministic photon-photon \(\sqrt{SWAP}\) gate using a \(\Lambda \) system. Phys. Rev. A 82, 010301(R) (2010)
Yan, W.B., Fan, H.: Single-photon quantum router with multiple output ports. Sci. Rep. 4, 4820 (2014)
Lodahl, P., Mahmoodian, S., Stobbe, S., Rauschenbeutel, A., Schneeweiss, P., Volz, J., Pichler, H., Zoller, P.: Chiral quantum optics. Nature 541, 473 (2017)
Li, T., Miranowicz, A., Hu, X., Xia, K., Nori, F.: Quantum memory and gates using a \(\Lambda \)-type quantum emitter coupled to a chiral waveguide. Phys. Rev. A 97, 062318 (2018)
Xia, K., Nori, F., Xiao, M.: Cavity-free optical isolators and circulators using a chiral cross-kerr nonlinearity. Phys. Rev. Lett. 121, 203602 (2018)
Yang, D.C., Cheng, M.T., Ma, X.S., Xu, J., Zhu, C.J., Huang, X.S.: Phase-modulated single-photon router. Phys. Rev. A 98, 063809 (2018)
Yan, C.H., Li, Y., Yuan, H.D., Wei, L.F.: Targeted photonic routers with chiral photon-atom interactions. Phys. Rev. A 97, 023821 (2018)
Wang, M., Wu, R., Lin, J., Zhang, J., Fang, Z., Chai, Z., Cheng, Y.: Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator. Quantum Eng. 1, e9 (2019)
Liu, D.E.: Sensing Kondo correlations in a suspended carbon nanotube mechanical resonator with spin-orbit coupling. Quantum Eng. 1, e10 (2019)
Wang, Z.H., Jaako, T., Kirton, P., Rabl, P.: Supercorrelated radiance in nonlinear photonic waveguides. Phys. Rev. Lett. 124, 213601 (2020)
Song, G.Z., Guo, J.L., Nie, W., Kwek, L.C., Long, G.L.: Optical properties of a waveguide-mediated chain of randomly positioned atoms. Opt. Express 29, 1903 (2021)
Lodahl, P., Mahmoodian, S., Stobbe, S.: Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015)
Roy, D., Wilson, C.M., Firstenberg, O.: Strongly interacting photons in one-dimensional continuum. Rev. Mod. Phys. 89, 021001 (2017)
Chang, D.E., Douglas, J.S., González-Tudela, A., Hung, C.L., Kimble, H.J.: Colloquium: quantum matter built from nanoscopic lattices of atoms and photons. Rev. Mod. Phys. 90, 031002 (2018)
Sheremet, A.S., Petrov, M.I., Iorsh, I.V., Poshakinskiy, A.V., Poddubny, A.N.: Waveguide quantum electrodynamics: collective radiance and photon-photon correlations. Rev. Mod. Phys. 95, 015002 (2023)
Shen, J.T., Fan, S.: Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett. 30, 2001 (2005)
Gerardot, B.D., Brunner, D., Dalgarno, P.A., Öhberg, P., Seidl, S., Kroner, M., Karrai, K., Stoltz, N.G., Petroff, P.M., Warburton, R.J.: Optical pumping of a single hole spin in a quantum dot. Nature 451, 441 (2008)
Warburton, R.J.: Single spins in self-assembled quantum dots. Nat. Mater. 12, 483 (2013)
Kannan, B., Ruckriegel, M.J., Campbell, D.L., et al.: Waveguide quantum electrodynamics with superconducting artificial giant atoms. Nature 583, 775 (2020)
Berezovsky, J., Mikkelsen, M.H., Stoltz, N.G., Coldren, L.A., Awschalom, D.D.: Picosecond coherent optical manipulation of a single electron spin in a quantum Dot. Science 320, 349 (2008)
Press, D., Ladd, T.D., Zhang, B.Y., Amamoto, Y.Y.: Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218 (2008)
Kumar, S., Andersen, S.K., Bozhevolnyi, S.I.: Extremely confined gap-plasmon waveguide modes excited by nitrogen-vacancy centers in diamonds. ACS Photonics 6, 23 (2018)
Gritsch, A., Ulanowski, A., Reiserer, A.: Purcell enhancement of single-photon emitters in silicon. Optica 6, 783 (2023)
Arcari, M., Söllner, I., Javadi, A.: Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014)
Reilly, D.J., Taylor, J.M., Petta, J.R., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Suppressing spin qubit dephasing by nuclear state preparation. Science 321, 817 (2008)
Acknowledgements
We thank Ming Hua and Yang-Yang Wang for stimulating discussions. This work is supported by the Tianjin Natural Science Foundation under Grant No. 23JCQNJC00560, the Natural Science Funds of Tianjin Normal University under Grant No. YJRC202421, the National Natural Science Foundation of China under Grants No. 12004281 and No. 62371038, Scientific Research the Natural Science Basic Research Program of Shaanxi under Grant No. 2023-JC-QN-0092, Program Funded by Education Department of Shaanxi Provincial Government under Grant No. 23JK0705.
Author information
Authors and Affiliations
Contributions
G.-Z. Song and X.-T. Sun proposed the idea and wrote the main manuscript text. All authors reviewed the manuscript.
Corresponding authors
Ethics declarations
Competing interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sun, XT., Zhang, JX., Gu, YY. et al. Heralded high-fidelity photonic hyper-CNOT gates with quantum scattering in one-dimensional waveguides. Quantum Inf Process 23, 326 (2024). https://doi.org/10.1007/s11128-024-04533-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04533-4