Skip to main content

Advertisement

Log in

Heralded high-fidelity photonic hyper-CNOT gates with quantum scattering in one-dimensional waveguides

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Hyper-parallel quantum computation offers irreplaceable advantages in quantum information processing (QIP). In this article, based on the scattering property of photons off emitters coupled to one-dimensional (1D) waveguides, we propose three heralded schemes for implementing hyper-controlled-not (hyper-CNOT) gates on two-photon systems. The four qubits of our hyper-CNOT gates are encoded on the spatial-mode and the polarization degrees of freedom (DOFs) of two-photon systems. In our schemes, the faulty scattering events between photons and quantum emitters caused by system imperfections can be detected and discarded. Besides, no auxiliary photons are needed during the process, reducing the operation time and resource consumption in QIP. We also discuss the success probabilities and fidelities of our schemes, concluding that our schemes may be feasible under current technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Ekert, A., Jozsa, R.: Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys. 68, 733 (1996)

    ADS  MathSciNet  Google Scholar 

  2. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    ADS  Google Scholar 

  3. Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64, 022307 (2001)

    ADS  Google Scholar 

  4. Gisin, N., Thew, R.: Quantum communication. Nat. Photon. 1, 165 (2007)

    ADS  Google Scholar 

  5. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum Metrology. Phys. Rev. Lett. 96, 010401 (2006)

    ADS  MathSciNet  Google Scholar 

  6. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  7. DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015 (1995)

    ADS  Google Scholar 

  8. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)

    ADS  Google Scholar 

  9. Zhang, J., Vala, J., Sastry, S., Whaley, K.B.: Exact Two-qubit Universal Quantum Circuit. Phys. Rev. Lett. 91, 027903 (2003)

    ADS  Google Scholar 

  10. Niskanen, A.O., Vartiainen, J.J., Salomaa, M.M.: Optimal multiqubit operations for Josephson charge qubits. Phys. Rev. Lett. 90, 197901 (2003)

    ADS  Google Scholar 

  11. Yamamoto, T., Pashkin, Y.A., Astafiev, O., Nakamura, Y., Tsai, J.S.: Demonstration of conditional gate operation using superconducting charge qubits. Nature 425, 941 (2003)

    ADS  Google Scholar 

  12. DiCarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D.I., Majer, J., Blais, A., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Demonstration of two qubit algorithms with a superconducting quantum processor. Nature 460, 240 (2009)

    ADS  Google Scholar 

  13. Neeley, M., Bialczak, R.C., Lenander, M., Lucero, E., Mariantoni, M., O’connell, A.D., Sank, D., Wang, H., Weides, M., Wenner, J., et al.: Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570 (2010)

    ADS  Google Scholar 

  14. Romero, G., Ballester, D., Wang, Y.M., Scarani, V., Solano, E.: Ultrafast quantum gates in circuit QED. Phys. Rev. Lett. 108, 120501 (2012)

    ADS  Google Scholar 

  15. Barends, R., Kelly, J., Megrant, A., Veitia, A., Sank, D., Jeffrey, E., White, T.C., Mutus, J., Fowler, A.G., Campbell, B., et al.: Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500 (2014)

    ADS  Google Scholar 

  16. Hua, M., Tao, M.J., Deng, F.G., Long, G.L.: One-step resonant controlled-phase gate on distant transmon qutrits in different 1D superconducting resonators. Sci. Rep. 5, 14541 (2015)

    ADS  Google Scholar 

  17. Jelezko, F., Gaebel, T., Popa, I., Domhan, M., Gruber, A., Wrachtrup, J.: Observation of Coherent Oscillation of a Single Nuclear Spin and Realization of a Two-Qubit Conditional Quantum Gate. Phys. Rev. Lett. 93, 130501 (2004)

    ADS  Google Scholar 

  18. Togan, E., Chu, Y., Trifonov, A.S., Jiang, L., Maze, J., Childress, L., Dutt, M.V.G., Sørensen, A.S., Hemmer, P.R., Zibrov, A.S., Lukin, M.D.: Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730 (2010)

    ADS  Google Scholar 

  19. Wei, H.R., Deng, F.G.: Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities. Phys. Rev. A 88, 042323 (2013)

    ADS  Google Scholar 

  20. Wang, T.J., Wang, C.: Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator. Phys. Rev. A 90, 052310 (2014)

    ADS  Google Scholar 

  21. Wei, H.R., Long, G.L.: Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities. Sci. Rep. 5, 12918 (2015)

    ADS  Google Scholar 

  22. Eisert, J., Jacobs, K., Papadopoulos, P., Plenio, M.B.: Optimal local implementation of nonlocal quantum gates. Phys. Rev. A 62, 052317 (2000)

    ADS  Google Scholar 

  23. Tan, T.R., Gaebler, J.P., Lin, Y., Wan, Y., Bowler, R., Leibfried, D., Wineland, D.J.: Multi-element logic gates for trapped-ion qubits. Nature 528, 380 (2015)

    ADS  Google Scholar 

  24. Long, G.L., Xiao, L.: Experimental realization of a fetching algorithm in a 7-qubit NMR spin Liouville space computer. J. Chem. Phys. 119, 8473 (2003)

    ADS  Google Scholar 

  25. Jones, J.A., Mosca, M., Hansen, R.H.: Implementation of a quantum search algorithm on a quantum computer. Nature 393, 344 (1998)

    ADS  Google Scholar 

  26. Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)

    ADS  Google Scholar 

  27. Xin, T., Hao, L., Hou, S.Y., Feng, G.R., Long, G.L.: Preparation of pseudo-pure states for NMR quantum computing with one ancillary qubit. Sci. China-Phys. Mech. Astron. 62, 960312 (2019)

    ADS  Google Scholar 

  28. Li, Y., Aolita, L., Chang, D.E., Kwek, L.C.: Robust-fidelity atom-photon entangling gates in the weak-coupling regime. Phys. Rev. Lett. 109, 160504 (2012)

    ADS  Google Scholar 

  29. Song, G.Z., Guo, J.L., Liu, Q., Wei, H., Long, G.L.: Heralded quantum gates for hybrid systems via waveguide-mediated photon scattering. Phys. Rev. A 104, 012608 (2021)

    ADS  MathSciNet  Google Scholar 

  30. Song, G.Z., Tao, M.J., Qiu, J., Wei, H.R.: Quantum entanglement creation based on quantum scattering in one-dimensional waveguides. Phys. Rev. A 106, 032416 (2022)

    ADS  MathSciNet  Google Scholar 

  31. Song, G.Z., Guo, J.L., Qiu, J., Wei, H.R., Tao, M.J., Long, G.L.: Implementations of heralded solid-state SWAP and \(\sqrt{SWAP}\) sates through waveguide-assisted interactions. Ann. Phys. 534, 2100373 (2022)

    Google Scholar 

  32. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)

    ADS  Google Scholar 

  33. Li, X., Wu, Y., Steel, D., Gammon, D., Stievater, T.H., Katzer, D.S., Park, D., Piermarocchi, C., Sham, L.J.: An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809 (2003)

    ADS  Google Scholar 

  34. Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)

    ADS  Google Scholar 

  35. Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dot-microcavity coupled system. Phys. Rev. A 87, 062337 (2013)

    ADS  Google Scholar 

  36. Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)

    ADS  Google Scholar 

  37. Han, Y.H., Cao, C., Fan, L., Zhang, R.: Heralded high-fidelity quantum hyper-CNOT gates assisted by charged quantum dots inside single-sided optical microcavities. Opt. Express 29, 20045 (2021)

    ADS  Google Scholar 

  38. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)

    ADS  Google Scholar 

  39. O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-not gate. Nature 426, 264 (2003)

    ADS  Google Scholar 

  40. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-not gate. Phys. Rev. Lett. 93, 250502 (2004)

    ADS  Google Scholar 

  41. Nielsen, M.A.: Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004)

    ADS  Google Scholar 

  42. Shi, Y.: Both toffoli and controlled-NOT need little help to do universal quantum computing. Quantum Inf. Comput. 3, 84 (2003)

    MathSciNet  Google Scholar 

  43. Liu, Y., Long, G.L., Sun, Y.: Analytic one-bit and CNOT gate constructions of general n-qubit controlled gates. Int. J. Quantum Inf. 6, 447 (2008)

    Google Scholar 

  44. Shende, V.V., Markov, I.L.: On the CNOT-cost of toffoli gates. Quantum Inf. Comput. 9, 461 (2009)

    MathSciNet  Google Scholar 

  45. Ren, B.C., Wei, H.R., Deng, F.G.: Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity. Laser Phys. Lett. 10, 095202 (2013)

    ADS  Google Scholar 

  46. Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4, 4623 (2014)

    Google Scholar 

  47. Ren, B.C., Wang, G.Y., Deng, F.G.: Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime. Phys. Rev. A 91, 032328 (2015)

    ADS  Google Scholar 

  48. Wang, G.Y., Li, T., Ai, Q., et al.: Faithful entanglement purification for high-capacity quantum communication with two-photon four-qubit systems. Phys. Rev. Appl. 10, 054058 (2018)

    ADS  Google Scholar 

  49. Qi, J., Li, K., Ang, Z.Y., et al.: Error identification entanglement purification for stationary system using high-dimensional entanglement. Phys. Rev. A. 109, 042423 (2024)

    ADS  MathSciNet  Google Scholar 

  50. Ren, B.C., Deng, F.: Robust hyperparallel photonic quantum entangling gate with cavity QED. Opt. Express 25, 10863 (2017)

    ADS  Google Scholar 

  51. Wei, H.R., Liu, W.Q., Chen, N.Y.: Implementing a two-photon three-degrees-of-freedom hyper-parallel controlled phase flip gate through cavity-assisted interactions. Ann. Phys. 532, 1900578 (2020)

    MathSciNet  Google Scholar 

  52. Du, F.F., Fan, G., Ren, X.M.: Deterministic hyperparallel control gates with weak Kerr effects. Adv. Quantum Technol. 6, 2300201 (2023)

    Google Scholar 

  53. Akimov, A.V., Mukherjee, A., Yu, C.L., Chang, D.E., Zibrov, A.S., Hemmer, P.R., Park, H., Lukin, M.D.: Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402 (2007)

    ADS  Google Scholar 

  54. Chang, D.E., Sørensen, A.S., Demler, E.A., Lukin, M.D.: A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807 (2007)

    Google Scholar 

  55. Bajcsy, M., Hofferberth, S., Balic, V., Peyronel, T., Hafezi, M., Zibrov, A.S., Vuletic, V., Lukin, M.D.: Efficient All-Optical Switching Using Slow Light within a Hollow Fiber. Phys. Rev. Lett. 102, 203902 (2009)

    ADS  Google Scholar 

  56. Vetsch, E., Reitz, D., Sagué, G., Schmidt, R., Dawkins, S.T., Rauschenbeutel, A.: Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett. 104, 203603 (2010)

    ADS  Google Scholar 

  57. Okaba, S., Takano, T., Benabid, F., Bradley, T., Vincetti, L., Maizelis, Z., Yampol’skii, V., Nori, F., Katori, H.: Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre. Nat. Commun. 5, 4096 (2014)

    ADS  Google Scholar 

  58. Gouraud, B., Maxein, D., Nicolas, A., Morin, O., Laurat, J.: Demonstration of a memory for tightly guided light in an optical nanofiber. Phys. Rev. Lett. 114, 180503 (2015)

    ADS  Google Scholar 

  59. Sørensen, H.L., Béguin, J.B., Kluge, K.W., Iakoupov, I., Sørensen, A.S., Müller, J.H., Polzik, E.S., Appel, J.: Coherent backscattering of light off one-dimensional atomic strings. Phys. Rev. Lett. 117, 133604 (2016)

    ADS  Google Scholar 

  60. Cheng, M.T., Xu, J.P., Agarwal, G.S.: Waveguide transport mediated by strong coupling with atoms. Phys. Rev. A 95, 053807 (2017)

    ADS  Google Scholar 

  61. Song, G.Z., Munro, E., Nie, W., Deng, F.G., Ang, G.J.Y., Kwek, L.C.: Photon scattering by an atomic ensemble coupled to a one-dimensional nanophotonic waveguide. Phys. Rev. A 96, 043872 (2017)

    ADS  Google Scholar 

  62. Wang, Z.H., Du, L., Li, Y., Liu, Y.: Phase-controlled single-photon nonreciprocal transmission in a one-dimensional waveguide. Phys. Rev. A 100, 053809 (2019)

    ADS  Google Scholar 

  63. Goban, A., Hung, C.L., Yu, S.P., Hood, J.D., Muniz, J.A., Lee, J.H., Martin, M.J., McClung, A.C., Choi, K.S., Chang, D.E., Painter, O., Kimble, H.J.: Atom-light interactions in photonic crystals. Nat. Commun. 5, 3808 (2014)

    ADS  Google Scholar 

  64. Douglas, J.S., Habibian, H., Hung, C.L., Gorshkov, A.V., Kimble, H.J., Chang, D.E.: Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photon. 9, 326 (2015)

    ADS  Google Scholar 

  65. González-Tudela, A., Hung, C.L., Chang, D.E., Cirac, J.I., Kimble, H.J.: Subwavelength vacuum lattices and atom-atom interactions in two-dimensional photonic crystals. Nat. Photon. 9, 320 (2015)

    ADS  Google Scholar 

  66. Song, G.Z., Munro, E., Nie, W., Kwek, L.C., Deng, F.G., Long, G.L.: Photon transport mediated by an atomic chain trapped along a photonic crystal waveguide. Phys. Rev. A 98, 023814 (2018)

    ADS  Google Scholar 

  67. Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)

    ADS  Google Scholar 

  68. Lalumière, K., Sanders, B.C., van Loo, A.F., Fedorov, A., Wallraff, A., Blais, A.: Input-output theory for waveguide QED with an ensemble of inhomogeneous atoms. Phys. Rev. A 88, 043806 (2013)

    ADS  Google Scholar 

  69. Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y.X., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 1, 718 (2017)

    MathSciNet  Google Scholar 

  70. Sundaresan, N.M., Lundgren, R., Zhu, G., Gorshkov, A.V., Houck, A.A.: Interacting qubit-photon bound states with superconducting circuits. Phys. Rev. X 9, 011021 (2019)

    Google Scholar 

  71. Song, G.Z., Kwek, L.C., Deng, F.G., Long, G.L.: Microwave transmission through an artificial atomic chain coupled to a superconducting photonic crystal. Phys. Rev. A 99, 043830 (2019)

    ADS  Google Scholar 

  72. Babinec, T.M., Hausmann, B.J.M., Khan, M., Zhang, Y., Maze, J.R., Hemmer, P.R., Lončar, M.: A diamond nanowire single-photon source. Nat. Nanotechnol. 5, 195 (2010)

    ADS  Google Scholar 

  73. Clevenson, H., Trusheim, M.E., Teale, C., SchrSöder, T., Braje, D., Englund, D.: Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide. Nat. Phys. 11, 393 (2015)

    Google Scholar 

  74. Sipahigil, A., Evans, R.E., Sukachev, D.D., Burek, M.J., Borregaard, J., Bhaskar, M.K., Nguyen, C.T., Pacheco, J.L., Atikian, H.A., Meuwly, C., et al.: An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847 (2016)

    ADS  Google Scholar 

  75. Zheng, H., Gauthier, D.J., Baranger, H.U.: Waveguide-QED-based photonic quantum computation. Phys. Rev. Lett. 111, 090502 (2013)

    ADS  Google Scholar 

  76. Waks, E., Vuckovic, J.: Dipole induced transparency in drop-filter cavity-waveguide systems. Phys. Rev. Lett. 96, 153601 (2006)

    ADS  Google Scholar 

  77. Zhou, L., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101, 100501 (2008)

    ADS  Google Scholar 

  78. Koshino, K., Ishizaka, S., Nakamura, Y.: Deterministic photon-photon \(\sqrt{SWAP}\) gate using a \(\Lambda \) system. Phys. Rev. A 82, 010301(R) (2010)

    ADS  Google Scholar 

  79. Yan, W.B., Fan, H.: Single-photon quantum router with multiple output ports. Sci. Rep. 4, 4820 (2014)

    Google Scholar 

  80. Lodahl, P., Mahmoodian, S., Stobbe, S., Rauschenbeutel, A., Schneeweiss, P., Volz, J., Pichler, H., Zoller, P.: Chiral quantum optics. Nature 541, 473 (2017)

    ADS  Google Scholar 

  81. Li, T., Miranowicz, A., Hu, X., Xia, K., Nori, F.: Quantum memory and gates using a \(\Lambda \)-type quantum emitter coupled to a chiral waveguide. Phys. Rev. A 97, 062318 (2018)

    ADS  Google Scholar 

  82. Xia, K., Nori, F., Xiao, M.: Cavity-free optical isolators and circulators using a chiral cross-kerr nonlinearity. Phys. Rev. Lett. 121, 203602 (2018)

    ADS  Google Scholar 

  83. Yang, D.C., Cheng, M.T., Ma, X.S., Xu, J., Zhu, C.J., Huang, X.S.: Phase-modulated single-photon router. Phys. Rev. A 98, 063809 (2018)

    ADS  Google Scholar 

  84. Yan, C.H., Li, Y., Yuan, H.D., Wei, L.F.: Targeted photonic routers with chiral photon-atom interactions. Phys. Rev. A 97, 023821 (2018)

    ADS  Google Scholar 

  85. Wang, M., Wu, R., Lin, J., Zhang, J., Fang, Z., Chai, Z., Cheng, Y.: Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator. Quantum Eng. 1, e9 (2019)

    Google Scholar 

  86. Liu, D.E.: Sensing Kondo correlations in a suspended carbon nanotube mechanical resonator with spin-orbit coupling. Quantum Eng. 1, e10 (2019)

    ADS  Google Scholar 

  87. Wang, Z.H., Jaako, T., Kirton, P., Rabl, P.: Supercorrelated radiance in nonlinear photonic waveguides. Phys. Rev. Lett. 124, 213601 (2020)

    ADS  Google Scholar 

  88. Song, G.Z., Guo, J.L., Nie, W., Kwek, L.C., Long, G.L.: Optical properties of a waveguide-mediated chain of randomly positioned atoms. Opt. Express 29, 1903 (2021)

    ADS  Google Scholar 

  89. Lodahl, P., Mahmoodian, S., Stobbe, S.: Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015)

    ADS  MathSciNet  Google Scholar 

  90. Roy, D., Wilson, C.M., Firstenberg, O.: Strongly interacting photons in one-dimensional continuum. Rev. Mod. Phys. 89, 021001 (2017)

    MathSciNet  Google Scholar 

  91. Chang, D.E., Douglas, J.S., González-Tudela, A., Hung, C.L., Kimble, H.J.: Colloquium: quantum matter built from nanoscopic lattices of atoms and photons. Rev. Mod. Phys. 90, 031002 (2018)

    ADS  MathSciNet  Google Scholar 

  92. Sheremet, A.S., Petrov, M.I., Iorsh, I.V., Poshakinskiy, A.V., Poddubny, A.N.: Waveguide quantum electrodynamics: collective radiance and photon-photon correlations. Rev. Mod. Phys. 95, 015002 (2023)

    ADS  Google Scholar 

  93. Shen, J.T., Fan, S.: Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett. 30, 2001 (2005)

    ADS  Google Scholar 

  94. Gerardot, B.D., Brunner, D., Dalgarno, P.A., Öhberg, P., Seidl, S., Kroner, M., Karrai, K., Stoltz, N.G., Petroff, P.M., Warburton, R.J.: Optical pumping of a single hole spin in a quantum dot. Nature 451, 441 (2008)

    ADS  Google Scholar 

  95. Warburton, R.J.: Single spins in self-assembled quantum dots. Nat. Mater. 12, 483 (2013)

    ADS  Google Scholar 

  96. Kannan, B., Ruckriegel, M.J., Campbell, D.L., et al.: Waveguide quantum electrodynamics with superconducting artificial giant atoms. Nature 583, 775 (2020)

    ADS  Google Scholar 

  97. Berezovsky, J., Mikkelsen, M.H., Stoltz, N.G., Coldren, L.A., Awschalom, D.D.: Picosecond coherent optical manipulation of a single electron spin in a quantum Dot. Science 320, 349 (2008)

    ADS  Google Scholar 

  98. Press, D., Ladd, T.D., Zhang, B.Y., Amamoto, Y.Y.: Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218 (2008)

    ADS  Google Scholar 

  99. Kumar, S., Andersen, S.K., Bozhevolnyi, S.I.: Extremely confined gap-plasmon waveguide modes excited by nitrogen-vacancy centers in diamonds. ACS Photonics 6, 23 (2018)

    Google Scholar 

  100. Gritsch, A., Ulanowski, A., Reiserer, A.: Purcell enhancement of single-photon emitters in silicon. Optica 6, 783 (2023)

    ADS  Google Scholar 

  101. Arcari, M., Söllner, I., Javadi, A.: Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014)

    ADS  Google Scholar 

  102. Reilly, D.J., Taylor, J.M., Petta, J.R., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Suppressing spin qubit dephasing by nuclear state preparation. Science 321, 817 (2008)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank Ming Hua and Yang-Yang Wang for stimulating discussions. This work is supported by the Tianjin Natural Science Foundation under Grant No. 23JCQNJC00560, the Natural Science Funds of Tianjin Normal University under Grant No. YJRC202421, the National Natural Science Foundation of China under Grants No. 12004281 and No. 62371038, Scientific Research the Natural Science Basic Research Program of Shaanxi under Grant No. 2023-JC-QN-0092, Program Funded by Education Department of Shaanxi Provincial Government under Grant No. 23JK0705.

Author information

Authors and Affiliations

Authors

Contributions

G.-Z. Song and X.-T. Sun proposed the idea and wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jing-Xue Zhang or Guo-Zhu Song.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, XT., Zhang, JX., Gu, YY. et al. Heralded high-fidelity photonic hyper-CNOT gates with quantum scattering in one-dimensional waveguides. Quantum Inf Process 23, 326 (2024). https://doi.org/10.1007/s11128-024-04533-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04533-4

Keywords