Avoid common mistakes on your manuscript.
Correction to: Quantum Inf Process https://doi.org/10.1007/s11128-023-04122-x
The parameters of the codes in Section 2 and Section 3 of our article [1] are not correctly stated. The \(e= k -\textrm{dim}_{\mathbb {F}_{q}}(C \cap C^{\perp })\) in Theorem 2.9 should be \(e=n- k -\textrm{dim}_{\mathbb {F}_{q}}(C \cap C^{\perp })\). The correct statement of Theorem 2.9 is
(Quantum construction X of the Euclidean dual) Let C be a linear code with parameters \([n, k]_{q}\) over \(\mathbb {F}_{q}\). Let \( e:= n-k -\textrm{dim}_{\mathbb {F}_{q}}(C \cap C^{\perp })\). Then there exists an \([[n+e, n-2k+e, d(Q)]]_q\) QEC code Q, where \(d(Q)\ge \textrm{min}\{d(C^{\perp }), d(C +C^{\perp })+1\}\).
This affects the corresponding parameters of the QEC codes in the statement of Theorems 3.2, 3.7, 3.9, Lemma 3.14, Theorems 3.15, 3.16 and 3.20. Moreover, the length and dimension of the QEC codes were erroneously displayed. The correct statements of the above theorems and the lemma are the following:
Let q be a prime power and \(\textrm{gcd}(n,q)=1 \). Let \(x^{n}-1\) be factored completely into nonassociated irreducible factors in \(\mathbb {F}_{q}[x]\) as
where \(f_{1}(x),f_{2}(x), \ldots , f_{s}(x)\) are irreducible polynomials that are associates to their own reciprocals, and \(h_{1}(x),h_{1}^{*}(x);\ldots ; h_{t}(x),h_{t}^{*}(x)\) are pairs of mutually reciprocal irreducible polynomials. If \(C=\langle f_{i_1}(x)\cdots f_{i_l}(x)g_{j_1}(x)\cdots g_{j_m}(x)\rangle \) with \(g_{j_e}(x)=h_{j_e}(x)~or~h_{j_e}^{*}(x)\) for \(1\le e\le m\), then
-
(1)
\(C^{\perp }=\langle \prod _{i\in \{1,\ldots ,s\}\backslash \{i_1,\ldots ,i_l\}}f_{i}(x) \prod _{j\in \{j_1,\ldots ,j_m\}}g_{j}(x)\prod _{j\in \{1,\ldots ,t\}\backslash \{j_1,\ldots ,j_m\}} h_{j}(x)h_{j}^{*}(x)\rangle .\)
-
(2)
\(\textrm{Hull}(C)=\langle \prod _{i\in \{1,\ldots ,s\}}f_{i}(x) \prod _{j\in \{j_1,\ldots ,j_m\}}g_{j}(x)\prod _{j\in \{1,\ldots ,t\}\backslash \{j_1,\ldots ,j_m\}} h_{j}(x)h_{j}^{*}(x)\rangle .\)
-
(3)
\(\textrm{Sum}(C)=\langle \prod _{j\in \{j_1,\ldots ,j_m\}}g_{j}(x)\rangle .\)
-
(4)
there exists a QEC code Q with parameters \([[n+e,n-2k+e,d(Q)]]_q\), where \(k=n-(\sum _{s=1}^l \textrm{deg}(f_{i_s}(x))+\sum _{t=1}^m \textrm{deg}(g_{j_t}(x))\), \(e=\sum _{s=1}^l \textrm{deg}(f_{i_s}(x))+\sum _{t=1}^m \textrm{deg}(g_{j_t}(x)+\sum _{i\in \{1,\ldots ,s\}}\textrm{deg}(f_{i}(x))+\sum _{j\in \{j_1,\ldots ,j_m\}}{deg}(g_{j}(x))+\sum _{j\in \{1,\ldots ,t\}\backslash \{j_1,\ldots ,j_m\}} ({deg}(h_{j}(x))+{deg}(h_{j}^{*}(x)))-n\), and \(d(Q)\ge \textrm{min}\{d(C^{\perp }),d(C+C^{\perp })+1\}\).
Let \(n=q-1\), \(\delta \ge 1\), and \(2\delta -1\le k\le \frac{n-1}{2} \). Then there exists a QEC code with parameters \([[2n+2\delta -1,2n-2k+2\delta -1,d(Q)]]_q\), where \(d(Q)\ge \textrm{min} \{k+1,k-2\delta +3\}\).
FormalPara Theorem 3.9Let \(C_1\) and \(C_2\) be \([n, k_1, d_1]_q\) and \([n, k_2, d_2]_q\) linear codes over \(\mathbb {F}_q\), respectively. Write \(C = C_1\curlyvee C_2\). Then there exists a QEC code with parameters \([[4n-(k_1+k_2+l_1+l_2),4n-3(k_1+k_2)-l_1-l_2,d(Q)\ge \textrm{min}\{d(C^{\perp }), d(Sum(C))+1\}]]_q\), where
and
Let q be a prime power and \(n\le q + 1\) be a positive integer. Let \(\{\alpha _1, \ldots , \alpha _{n-1}\}\) be \(n-1\) distinct elements of \(\mathbb {F}_q\). Further, let \(P(x)=f(x)g(x)\) and \(Q(x)=g(x)h(x)\) where f(x), g(x) and h(x) are three distinct monic irreducible polynomials in \(\mathbb {F}_q[x]\) such that
-
(1)
\(\textrm{deg}(P(x)) + \textrm{deg}(Q(x)) = n\).
-
(2)
\(\textrm{gcd}(P(x)Q(x), ~\prod _{i=1}^{n}(x-\alpha _i))=1\).
-
(3)
\(\frac{P(\alpha _i)Q(\alpha _i)}{\prod _{1\le j\le n-1,j\ne i}(\alpha _i-\alpha _j))}=v_i^2\), for every \(1 \le i \le n-1\). Suppose that \(\textrm{deg}(f(x))=t\) and \(\textrm{deg}(g(x))=k\) where \(0\le t \le n-2k\) and \(k\le \lfloor \frac{n}{2}\rfloor \). Then, there exists a QEC code with parameters \([[2n-2k-t,2n-4k-3t, d]]_q\) where \(d\ge \textrm{min}\{k+t+1,k+2\}\).
Let \(q=l^2\) and \(l>7\) is an odd prime power. Further, let n, k, t be integers such that \(2\le k\le \lfloor \frac{n-2}{2}\rfloor , 2\le t\le n-2k\) and \(8\le n\le l+1\).
-
(1)
There exists a QEC code with parameters \([[2n-2k-t,2n-4k-3t, d]]_q\) where \(d\ge \textrm{min}\{k+t+1,k+2\}\).
-
(2)
There exists a QEC WMDS code with parameters \([[2n-2k-2,2n-4k-6, d]]_q\), where \(d\ge k+2\).
Let \(q=2^s\) and \(s\ge 3, 8\le n\le q+1\) and \(2\le k\le \lfloor \frac{n-2}{2}\rfloor \). Then there exists a QEC WMDS code with parameters \([[2n-2k-2,2n-4k-6, d]]_q\), where \(d\ge k+2\).
FormalPara Theorem 3.20Let \(\mathbb {F}_4=\{0,1,w,w^2: 1+w+w^2=0,w^3=1\}\). For \(i=1,2\), suppose that \(C_i\subset \mathbb {F}_{4}^{n}\) is an \([n,k_i,d_i]_{4}\) code. Let \(C=[C_1,C_2]A\) where \(A=\begin{pmatrix}w& 1\\ 1& w\end{pmatrix}\). Write \(d_{C_i^{\perp }}=d(C_i^{\perp })\) and \(d_{\textrm{Sum}(C_i)}=d(\textrm{Sum}(C_i))\) for \( i=1,2\). Then there exists a QEC code with parameters \([[4n-(k_1+k_2+k),4n-3(k_1+k_2)-k, d]]_{4}\), where
and
Data availability
Data sharing is not applicable to this paper as no datasets were generated or analysed during the current study
Reference
Hu, P., Liu, X.: Quantum error-correcting codes from the quantum construction X. Quantum Inf. Process. 22, 366 (2023)
Acknowledgements
We thank Markus Grassl for pointing out these mistakes.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Hu, P., Liu, X. Correction to: Quantum error-correcting codes from the quantum construction X. Quantum Inf Process 23, 332 (2024). https://doi.org/10.1007/s11128-024-04542-3
Published:
DOI: https://doi.org/10.1007/s11128-024-04542-3