Abstract
This paper introduces a bidirectional quantum controlled teleportation (BQCT) protocol within a multi-hop communication network, designed to teleport an arbitrary \(n\)-qubit state through an \(m\)-hop network framework. Utilizing the IBM Quantum (IBMQ) Experience simulation framework and the Qiskit library, we empirically substantiate the protocol's efficacy. Our findings indicate consistent teleportation across varying hop counts, though the precision of the output state diminishes with an increase in hops. This research further delves into the impact of quantum noise—namely amplitude-damping, phase-damping, bit-flip, and phase-flip—on the protocol's performance. A significant finding is that the detrimental effects of quantum noise escalate with the number of hops, with noise influence showing independence from the input state and causing an exponential decrease in output state fidelity. Thus, our analysis suggests a potential for optimizing real quantum communication systems through a balance between error reduction strategies and the maximum tolerable noise level.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The codes that support the plots within the paper are publicly available on a GitHub repository at: https://github.com/YousefMafi96/Papers/tree/Quantum-Communication.
References
Du, F.F., Fan, G., Ren, X.M., Ma, M.: Deterministic hyperparallel control gates with weak Kerr effects. Adv. Quantum Technol. 6(10), 2300201 (2023). https://doi.org/10.1002/qute.202300201
Du, F.F., Ren, X.M., Fan, Z.G., Li, L.H., Du, X.S., Ma, M., Fan, G., Guo, J.: Decoherence-free-subspace-based deterministic conversions for entangled states with heralded robust-fidelity quantum gates. Opt. Express 32(2), 1686–1700 (2024). https://doi.org/10.1364/OE.508088
Du, F.F., Ren, X.M., Ma, M., Fan, G.: Qudit-based high-dimensional controlled-not gate. Opt. Lett. 49(5), 1229–1232 (2024). https://doi.org/10.1364/OL.518336
Du, F.F., Fan, G., Ren, X.M.: Kerr-effect-based quantum logical gates in decoherence-free subspace. Quantum 8, 1342 (2024). https://doi.org/10.22331/q-2024-05-13-1342
Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 1, 165–171 (2007). https://doi.org/10.1038/nphoton.2007.22
Mafi, Y., Kazemikhah, P., Ahmadkhaniha, A., Aghababa, H., Kolahdouz, M.: Bidirectional quantum teleportation of an arbitrary number of qubits over a noisy quantum system using 2 n Bell states as quantum channel. Opt. Quant. Electron. 54, 568 (2022). https://doi.org/10.1007/s11082-022-03951-x
Ahmadkhaniha, A., Mafi, Y., Kazemikhah, P., Aghababa, H., Barati, M., Kolahdouz, M.: Enhancing quantum teleportation: an enable-based protocol exploiting distributed quantum gates. Opt. Quant. Electron. 55, 1079 (2023). https://doi.org/10.1007/s11082-023-05351-1
Mafi, Y., Kazemikhah, P., Ahmadkhaniha, A., Aghababa, H., Kolahdouz, M.: Efficient controlled quantum broadcast protocol using 6n-qubit cluster state in noisy channels. Opt. Quant. Electron. 55, 653 (2023). https://doi.org/10.1007/s11082-023-04928-0
Mafi, Y., Kookani, A., Aghababa, H., Barati, M., Kolahdouz, M.: Quantum broadcasting of the generalized GHZ state: quantum noise analysis using quantum state tomography via IBMQ simulation. Phys. Scr. 99, 085124 (2024). https://doi.org/10.1088/1402-4896/ad62a9
Khorrampanah, M., Houshmand, M., Sadeghizadeh, M., Aghababa, H., Mafi, Y.: Enhanced multiparty quantum secret sharing protocol based on quantum secure direct communication and corresponding qubits in noisy environment. Opt. Quant. Electron. 54, 832 (2022). https://doi.org/10.1007/s11082-022-04164-y
Zhou, L., Sheng, Y.B.: One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 65(5), 250311 (2022). https://doi.org/10.1007/s11433-021-1863-9
Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65(1), 12–20 (2020). https://doi.org/10.1016/j.scib.2019.10.025
Zhou, L., Xu, B.W., Zhong, W., Sheng, Y.B.: Device-independent quantum secure direct communication with single-photon sources. Phys. Rev. Appl. 19(1), 014036 (2023). https://doi.org/10.1103/PhysRevApplied.19.014036
Guo, R., Zhou, L., Gu, S.P., Wang, X.F., Sheng, Y.B.: Generation of concatenated Greenberger–Horne–Zeilinger-type entangled coherent state based on linear optics. Quantum Inf. Process. 16, 1–13 (2017). https://doi.org/10.1007/s11128-017-1519-9
Zhou, L., Ou-Yang, Y., Wang, L., Sheng, Y.B.: Protecting single-photon entanglement with practical entanglement source. Quantum Inf. Process. 16, 1–21 (2017). https://doi.org/10.1007/s11128-017-1601-3
Zarmehi, F., Kochakzadeh, M.H., Abbasi-Moghadam, D., Talebi, S.: Efficient circular controlled quantum teleportation and broadcast schemes in the presence of quantum noises. Quantum Inf. Process. 20, 175 (2021). https://doi.org/10.1007/s11128-021-03088-y
Zha, X.-W., Zou, Z.-C., Qi, J.-X., Song, H.-Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740–1744 (2013). https://doi.org/10.1007/s10773-012-1208-5
Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view. Int. J. Theor. Phys. 52, 3790–3796 (2013). https://doi.org/10.1007/s10773-013-1684-2
Verma, V.: Bidirectional controlled quantum teleportation of multi-qubit entangled states via five-qubit entangled state. Phys. Scr. 96, 035105 (2021). https://doi.org/10.1088/1402-4896/abd78f
Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52, 3870–3873 (2013). https://doi.org/10.1007/s10773-013-1694-0
Sun, X.M., Zha, X.W.: A scheme of bidirectional quantum controlled teleportation via six-qubit maximally entangled state. Acta Photonica Sin. 48, 1052–1056 (2013)
Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54, 269–272 (2015). https://doi.org/10.1007/s10773-014-2221-7
Li, Y.-H., Nie, L.-P., Li, X.-L., Sang, M.-H.: Asymmetric bidirectional controlled teleportation by using six-qubit cluster state. Int. J. Theor. Phys. 55, 3008–3016 (2016). https://doi.org/10.1007/s10773-016-2933-y
Nie, Y.-Y., Sang, M.-H.: Effects of noise on asymmetric bidirectional controlled teleportation. Int. J. Theor. Phys. 55, 4759–4765 (2016). https://doi.org/10.1007/s10773-016-3099-3
Sang, M.-H.: Bidirectional quantum controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55, 380–383 (2016). https://doi.org/10.1007/s10773-015-2670-7
Duan, Y.-J., Zha, X.-W., Sun, X.-M., Xia, J.-F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53, 2697–2707 (2014). https://doi.org/10.1007/s10773-014-2065-1
Zhang, D., Zha, X.-W., Duan, Y.-J.: Bidirectional and asymmetric quantum controlled teleportation. Int. J. Theor. Phys. 54, 1711–1719 (2015). https://doi.org/10.1007/s10773-014-2372-6
Nie, Y.-Y., Sang, M.-H.: Asymmetric bidirectional controlled teleportation via seven-photon entangled state. Int. J. Theor. Phys. 56, 3452–3454 (2017). https://doi.org/10.1007/s10773-017-3510-8
Wu, H., Zha, X.-W., Yang, Y.-Q.: Controlled bidirectional hybrid of remote state preparation and quantum teleportation via seven-qubit entangled state. Int. J. Theor. Phys. 57, 28–35 (2018). https://doi.org/10.1007/s10773-017-3537-x
Wang, J.-W., Shu, L.: Bidirectional quantum controlled teleportation of qudit state via partially entangled GHZ-type states. Int. J. Mod. Phys. B 29, 1550122 (2015). https://doi.org/10.1142/S0217979215501222
Ma, P.-C., Chen, G.-B., Li, X.-W., Zhan, Y.-B.: Bidirectional controlled quantum teleportation in the three-dimension system. Int. J. Theor. Phys. 57, 2233–2240 (2018). https://doi.org/10.1007/s10773-017-3510-8
Zhang, D., Zha, X.W., Li, W., Yu, Y.: Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state. Quantum Inf. Process. 14, 3835–3844 (2015). https://doi.org/10.1007/s11128-015-1067-0
Huo, G., Zhang, T., Zha, X., Zhang, X., Zhang, M.: Controlled asymmetric bidirectional quantum teleportation of two-and three-qubit states. Quantum Inf. Process. 20, 1–11 (2021). https://doi.org/10.1007/s11128-020-02956-3
Jiang, Y.-L., Zhou, R.-G., Hao, D.-Y., Hu, W.: Bidirectional controlled quantum teleportation of three-qubit state by a new entangled eleven-qubit state. Int. J. Theor. Phys. 60, 3618–3630 (2021). https://doi.org/10.1007/s10773-021-04935-5
Kazemikhah, P., Tabalvandani, M.B., Mafi, Y., Aghababa, H.: Asymmetric bidirectional controlled quantum teleportation using eight qubit cluster state. Int. J. Theor. Phys. 61, 17 (2022). https://doi.org/10.1007/s10773-022-04995-1
Yu, X.-T., Xu, J., Zhang, Z.-C.: Distributed wireless quantum communication networks. Chin. Phys. B 22, 090311 (2013). https://doi.org/10.1088/1674-1056/22/9/090311
Yu, X.-T., Zhang, Z.-C., Xu, J.: Distributed wireless quantum communication networks with partially entangled pairs. Chin. Phys. B 23, 010303 (2013). https://doi.org/10.1088/1674-1056/23/1/010303
Cai, X.-F., Yu, X.-T., Shi, L.-H., Zhang, Z.-C.: Partially entangled states bridge in quantum teleportation. Front. Phys. 9, 646–651 (2014). https://doi.org/10.1007/s11467-014-0432-2
Shi, L.-H., Yu, X.-T., Cai, X.-F., Gong, Y.-X., Zhang, Z.-C.: Quantum information transmission in the quantum wireless multi-hop network based on Werner state. Chin. Phys. B 24, 050308 (2015). https://doi.org/10.1088/1674-1056/24/5/050308
Yang, Y.-G., Cao, S.-N., Zhou, Y.-H., Shi, W.-M.: Quantum wireless network communication based on cluster states. Mod. Phys. Lett. A 35, 2050178 (2020). https://doi.org/10.1142/S0217732320501783
Zou, Z.-Z., Yu, X.-T., Gong, Y.-X., Zhang, Z.-C.: Multi-hop teleportation of two-qubit state via the composite GHZ–Bell channel. Phys. Lett. A 381, 76–81 (2017). https://doi.org/10.1016/j.physleta.2016.10.048
Yang, Y.-L., Yang, Y.-G., Zhou, Y.-H., Shi, W.-M., Li, J.: Efficient quantum multi-hop communication based on Greenberger–Horne–Zeilinger states and Bell states. Quantum Inf. Process. 20, 189 (2021). https://doi.org/10.1007/s11128-021-03121-0
Zhang, Z., Wang, J., Sun, M.: Multi-hop teleportation via the composite of asymmetric W state and Bell state. Int. J. Theor. Phys. 57, 3605–3620 (2018). https://doi.org/10.1007/s10773-018-3874-4
Choudhury, B.S., Samanta, S.: A multi-hop teleportation protocol of arbitrary four-qubit states through intermediate nodes. International Journal of Quantum Information. 16, 1850026 (2018). https://doi.org/10.1142/S0219749918500260
Wu, F., Bai, M.-Q., Tang, L., Mo, Z.-W.: Multi-hop quantum teleportation of an arbitrary two-qubit state based on hierarchical simultaneous entanglement swapping. J. Phys. A: Math. Theor.. 56, 065301 (2023). https://doi.org/10.1088/1751-8121/acb91d
Zhang, Z., Sang, Y.: Bidirectional quantum teleportation in multi-hop communication network. Quantum Inf. Process. 22, 201 (2023). https://doi.org/10.1007/s11128-023-03950-1
Qiskit: An Open-source Framework for Quantum Computing. (2023). Url: https://ibm.com/quantum/qiskit.
Guérin, P.A., Rubino, G., Brukner, Č: Communication through quantum-controlled noise. Phys. Rev. A 99, 062317 (2019). https://doi.org/10.1103/PhysRevA.99.062317
Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press (2001)
Braunstein, S.L.: Quantum error correction for communication with linear optics. Nature 394, 47–49 (1998). https://doi.org/10.1038/27850
Acknowledgements
No acknowledgments.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
Y. M. contributed to conceptualization, methodology, investigation, implementation, noise analysis, and visualization. A. K. contributed to software, formal analysis, validation, literature survey, writing, data curation, and visualization. H. A. performed project administration, validation, and supervision. M. B. and M. K. performed validation and supervision.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Ethical approval
The authors ethically approve the material of the paper. Authors have been informed and consent regarding the submission of the article. No human/animal has participated in this research.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Mafi, Y., Kookani, A., Aghababa, H. et al. Bidirectional quantum controlled teleportation in multi-hop networks: a generalized protocol for the arbitrary n-qubit state through the noisy channel. Quantum Inf Process 23, 350 (2024). https://doi.org/10.1007/s11128-024-04561-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04561-0