Skip to main content
Log in

Reducing the effect of noise on quantum gate design by linear filtering

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we discuss how to reduce the interference that noise introduces into the scalar input signal of a quantum gate. Non-separable quantum gates can be made by making a small potential change to the Hamiltonian and then using perturbation theory to figure out the evolution operator. It is assumed that a scalar, temporally varying signal modulates the potential. To lessen the impact of noise on the design of the gate, we here take into account an extra noise component in the input signal and process it with a linear time-invariant filter. In order to meet these requirements, the Frobenius norm of the difference between the realized gate and the theoretical gate is minimized while taking into account the energy of the signal and the energy of the filter. Results from a computer simulation have been obtained by discretizing the resulting equations. The simulation results show that the proposed method effectively reduces the impact of noise on the gate design and improves its performance. This approach can be useful in designing gates for various applications, including signal processing and communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

There are no associated data with my manuscript.

References

  1. Griffiths, D.J.: Introduction to Quantum Mechanics, 2nd edn., pp. 261–367. Pearson Hall (2005)

    Google Scholar 

  2. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 6–7 (1982)

    Article  MathSciNet  Google Scholar 

  3. David, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  4. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithm on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  5. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer-Verlag, Berlin Heidelberg New York (1980)

    Google Scholar 

  6. Yongdan, Y., Bing-Nan, L., Li, Ying: Accelerated quantum Monte Carlo with mitigated error on noisy quantum computer. PRX Quantum 2, 040361 (2021). https://doi.org/10.1103/PRXQuantum.2.040361

    Article  ADS  Google Scholar 

  7. Cheung Waterloo, D.: Using generalized quantum Fourier transforms in quantum phase estimation algorithms (2003)

  8. Dirac, P.A.M.: The principal of quantum mechanics, 4th edn., pp. 108–178. Oxford University Press (1958)

    Google Scholar 

  9. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, pp. 171–286. Cambridge University Press (2000)

    Google Scholar 

  10. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for solving linear systems of equations. Phys. Rev. Lett. 15(103), 150502 (2009)

    Article  Google Scholar 

  11. Ralph, T.C., Gilchrist, A., Milburn, G.J., Munro, W.J., Glancy, S.: Quantum computation with optical coherent states. Phys. Rev. Lett. A 68, 042319 (2003)

    Article  ADS  Google Scholar 

  12. Zhang, W., Feng, D., Gilmore, R.: Coherent states—theory and some application. Rev. Modern Phys. 62, 867–927 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  13. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. Lond. A 454, 339 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  14. DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015 (1995)

    Article  ADS  Google Scholar 

  15. Cheung, D.: Using generalized quantum Fourier transforms in quantum phase estimation algorithms. University of Waterloo (2003)

    Google Scholar 

  16. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for solving linear systems of equations. Phys. Rev. Lett. 15(103), 150502 (2009)

    Article  Google Scholar 

  17. Perelomov, A.M.: Generalized Coherent States and their Applications, Texts and Monographs in Physics, pp. 7–39. Springer-Verlag (1986)

    Google Scholar 

  18. Ralph, T.C., Gilchrist, A., Milburn, G.J., Munro, W.J., Glancy, S.: Quantum computation with optical coherent states. Phys. Rev. Lett. A 68, 042319 (2003)

    Article  ADS  Google Scholar 

  19. Gautam, K., Rawat, T.K., Parthasarathy, H., Sharma, N., Upadhyaya, V.: Realization of the three-qubit quantum controlled gate based on matching Hermitian generators. Quantum Inf. Process. 16(5), 113 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. Barratt, F., Dborin, J., Bal, M., Stojevic, V., Pollmann, F., Green, A.G.: Parallel quantum simulation of large systems on small NISQ computers. npj Quantum Inf. 7, 79 (2021)

    Article  ADS  Google Scholar 

  21. Paris, M.G.A.: Quantum estimation for quantum technology. Int. J. Quantum Inf. 07(01), 125–137 (2009)

    Article  Google Scholar 

  22. Ferrie, C., Granade, C.E., Cory, D.G.: How to best sample a periodic probability distribution, or on the accuracy of Hamiltonian finding strategies. Quantum Inf. Process. 12, 611–623 (2013). https://doi.org/10.1007/s11128-012-0407-6

    Article  ADS  MathSciNet  Google Scholar 

  23. Sun, J., Lu, S., Liu, F., Zhou, Q., Zhang, Z.: Generalized relation between fidelity and quantum adiabatic evolution. Quantum Inf. Process. 14, 1757–1765 (2015). https://doi.org/10.1007/s11128-015-0972-6

    Article  ADS  MathSciNet  Google Scholar 

  24. Schirmer, S.G., Kolli, A., Oi, D.K.L.: Experimental Hamiltonian identification for controlled two-level systems Phys. Rev. A 69, 050306(R) (2004)

    Article  Google Scholar 

  25. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. R. Soc. Lond. Proc. A 439, 553–558 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  26. Pino, J.M., Dreiling, J.M., Figgatt, C., Gaebler, J.P., Moses, S.A., Allman, M.S., Baldwin, C.H., Foss-Feig, M., Hayes, D., Mayer, K., Ryan-Anderson, C., Neyenhuis, B.: Demonstration of the trapped-ion quantum CCD computer architecture. Nature 592(7853), 209–213 (2021). https://doi.org/10.1038/s41586-021-03318-4

    Article  ADS  Google Scholar 

  27. Clark, C.R., Tinkey, H.N., Sawyer, B.C., Meier, A.M., Burkhardt, K.A., Seck, C.M., Shappert, C.M., Guise, N.D., Volin, C.E., Fallek, S.D., et al.: High-fidelity Bell-state preparation with 40Ca+ optical qubits. Phys. Rev. Lett. 127, 130505 (2021)

    Article  ADS  Google Scholar 

  28. Kumar, P.: Direct implementation of an N-qubit controlled-unitary gate in a single step. Quantum Inf. Process. 12, 1201–1223 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  29. Altafini, Claudio: On the generation of sequential unitary gates from continuous time \(Schr\ddot{o}dinger\) equations driven by external fields. Quantum Inf. Process. 1, 207–224 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  30. Xie, Tianyu, Zhao, Zhiyuan, Xu, Shaoyi, Kong, Xi., Zhiping, Wang, Yang, Mengqi, Wang, Ya., Shi, Fazhan, Du, Jiangfeng: 99.92 percentage—Fidelity CNOT gates in solids by noise filtering. Phys. Rev. Lett. 130, 030601 (2023)

    Article  ADS  Google Scholar 

  31. Gautam, K., Sharma, N., Rawat, T.K., Parthasarathy, H.: Realization of commonly used quantum gates using perturbed harmonic oscillator. Quantum Inf. Process. 14, 3257–3277 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  32. Kumar, G., Navneet, S., Tarun, K.R., Harish, P., Garv, C.: Realization of quantum gates based on three-dimensional harmonic oscillator in a time-varying electromagnetic field. Quantum Inf. Process 14, 3279–3302 (2015)

    Article  MathSciNet  Google Scholar 

  33. Ostmeyer, J.: Optimised Trotter decompositions for classical and quantum computing. J. Phys. A Math. Theor. 56, 285303 (2023). https://doi.org/10.1088/1751-8121/acde7a

    Article  ADS  MathSciNet  Google Scholar 

  34. Green, Todd, Uys, Hermann, Biercuk, Michael J.: High-order noise filtering in nontrivial quantum logic gates. Phys. Rev. Lett. 109, 020501 (2012). https://doi.org/10.1103/PhysRevLett.109.020501

    Article  ADS  Google Scholar 

  35. de Lima Silva, T., Borges, L., Aolita, L.: Fourier-based quantum signal processing (2022). (arXiv:2206.02826 [quant-ph])

  36. Postler, L., Heuben, S., Pogorelov, I., Rispler, M., Feldker, T., Meth, M., Marciniak, C.D., Stricker, R., Ringbauer, M., Blatt, R., et al.: Demonstration of fault-tolerant universal quantum gate operations. Nature 605, 675 (2022)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Gautam.

Ethics declarations

Conflict of interest

On behalf of author, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, K. Reducing the effect of noise on quantum gate design by linear filtering. Quantum Inf Process 23, 364 (2024). https://doi.org/10.1007/s11128-024-04575-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04575-8

Keywords