Skip to main content

Advertisement

Log in

A quantum moving target segmentation algorithm based on mean background modeling

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Classical algorithms for moving target segmentation have made significant progress, but the real-time problem has become a significant obstacle for them as the data volume grows. Quantum computing has been proven to be beneficial for image segmentation, but is still scarce for video. In this paper, a quantum moving target segmentation algorithm based on mean background modeling is proposed, which can utilize the quantum mechanism to do segmentation operations on all pixels in a video at the same time. In addition, a quantum divider with lower quantum cost is designed calculate pixel mean, and then, a number of quantum modules are designed according to the algorithmic steps to build the complete quantum algorithmic circuit. For a video containing \(2^m\) frames (every frame is a \(2^n \times 2^n\) image with q grayscale levels), the proposed algorithm is superior compared to both existing quantum and classical algorithms. Finally, the experiment on IBM Q shows the feasibility of the algorithm in the NISQ era.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. Abd El-Latif, A.A., Abd-El-Atty, B., Venegas-Andraca, S.E.: A novel image steganography technique based on quantum substitution boxes. Opt. Laser Technol. 116, 92–102 (2019)

    ADS  Google Scholar 

  2. Aleksandrowicz, G., Alexander, T., Barkoutsos, P., et al.: Qiskit: an open-source framework for quantum computing (2019)

  3. Ali, B., Majid, H.: Optimised reversible divider circuit. Int. J. Innovative Comput. Appl. 7, 13–33 (2016)

    Google Scholar 

  4. Caraiman, S., Manta, V.I.: Histogram-based segmentation of quantum images. Theoret. Comput. Sci. 529, 46–60 (2014)

    MathSciNet  Google Scholar 

  5. Caraiman, S., Manta, V.I.: Image segmentation on a quantum computer. Quantum Inf. Process. 14, 1693–1715 (2015)

    ADS  MathSciNet  Google Scholar 

  6. Chen, S., Qu, Z.: Novel quantum video steganography and authentication protocol with large payload. Internet. J. Theoret. Phys. 57, 3689–3701 (2018)

    ADS  Google Scholar 

  7. Chetia, R., Boruah, S., Sahu, P.P.: Quantum image edge detection using improved Sobel mask based on NEQR. Quantum Inf. Process. 20, 21 (2021)

    ADS  MathSciNet  Google Scholar 

  8. Fan, P., Zhou, R.G., Jing, N., Li, H.S.: Geometric transformations of multidimensional color images based on NASS. Inf. Sci. 340, 191 (2016)

    Google Scholar 

  9. Fan, P., Zhou, R.G., Hu, W., et al.: Quantum image edge extraction based on classical Sobel operator for NEQR. Quantum Inf. Process. 18, 24 (2019)

    ADS  Google Scholar 

  10. Faraz, D., Majid, H.: A novel nanometric fault tolerant reversible divider. Int. J. Phys. Sci. 6, 5671–5681 (2011)

    Google Scholar 

  11. Garcia-Garcia, B., Bouwmans, T., Rosales Silva, A.J.: Background subtraction in real applications: challenges, current models and future directions. Comput. Sci. Rev. 35, 100204 (2020)

    MathSciNet  Google Scholar 

  12. Giraldo, J.H., Javed, S., Bouwmans, T.: Graph moving object segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 44, 2485–2503 (2020)

    Google Scholar 

  13. Hancock, E.R.: Local feature point extraction for quantum images. Quantum Inf. Process. 14, 1573–1588 (2015)

    MathSciNet  Google Scholar 

  14. IBM Q. https://www.research.ibm.com/ibm-q/ Accessed 10 Jan (2024)

  15. Iliyasu, A.M., Le, P.Q., Dong, F., et al.: A framework for representing and producing movies on quantum computers. Int. J. Quantum Inf. 9, 1459–1497 (2011)

    Google Scholar 

  16. Ismail, G., Lamjed, T., Bouraoui, O.: Division circuit using reversible logic gates. In: 2018 International Conference on Advanced Systems and Electric Technologies (IC_ASET), pp. 60-65 (2018)

  17. Jiang, N., Dang, K.Y., Wang, L.: Quantum image matching. Quantum Inf. Process. 15, 3543–3572 (2016)

    ADS  MathSciNet  Google Scholar 

  18. Lafifa, J., Hafiz, M. H. B.: Efficient approaches to design a reversible floating point divider. In: 2013 IEEE International Symposium on Circuits and Systems (ISCAS), pp.3004-3007 (2013)

  19. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10, 63–84 (2011)

    ADS  MathSciNet  Google Scholar 

  20. Li, H.S., Fan, P., Xia, H.Y., et al.: Quantum implementation circuits of quantum signal representation and type conversion. IEEE Trans. Circuits Syst. I Regul. Pap. 66, 341–354 (2019)

    Google Scholar 

  21. Li, H.S., Fan, P., Xia, H.Y., et al.: Efficient quantum arithmetic operation circuits for quantum image processing. Sci. China Phys. Mech. Astron. 63, 280311 (2020)

    ADS  Google Scholar 

  22. Liu, W., Wang, L.: Quantum image edge detection based on eight-direction Sobel operator for NEQR. Quantum Inf. Process. 21, 190 (2022)

    ADS  MathSciNet  Google Scholar 

  23. Liu, W., Wang, L., Wu, Q.: A quantum moving target segmentation algorithm for grayscale video. Adv. Quantum Tech. 2300248, 1–10 (2023)

    ADS  Google Scholar 

  24. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  25. Song, X., Wang, H., Venegas-Andraca, S.E., et al.: Quantum video encryption based on qubit-planes controlled-XOR operations and improved logistic map. Phys. A 537, 122660 (2020)

    MathSciNet  Google Scholar 

  26. Sun, B., Iliyasu, A.M., Yan, F., et al.: An RGB multi-channel representation for images on quantum computers. Adv. Comput. Intell. Inform. 17, 404–417 (2013)

    Google Scholar 

  27. Thapliyal, H., Munoz-Coreas, E., Varun, T.S.S., Humble, T.S.: Quantum circuit designs of integer division optimizing T -count and T -depth. IEEE Trans. Emerg. Top. Comput. 9, 1045–1056 (2021)

    Google Scholar 

  28. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum system. Quant Inf. Process. 9, 1–11 (2010)

    ADS  MathSciNet  Google Scholar 

  29. Wang, S.: Frames motion detection of quantum video. Proceeding of the Twelfth International Conference on Intelligent Information Hiding and Multimedia Signal Processing 64, 145–151 (2016)

    Google Scholar 

  30. Wang, L., Liu, W.: A quantum segmentation algorithm based on local adaptive threshold for NEQR image. Mod. Phys. Lett. A 37, 2250139 (2022)

    ADS  MathSciNet  Google Scholar 

  31. Wang, S., Song, X.: Quantum video information hiding based on improved LSQb and motion vector. J. Internet. Technol. 18, 1361–1368 (2017)

    Google Scholar 

  32. Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14, 1589 (2015)

    ADS  MathSciNet  Google Scholar 

  33. Wang, L., Liu, Y., Meng, F., et al.: A quantum synthetic aperture radar image denoising algorithm based on grayscale morphology. iScience 27, 109627 (2024)

    ADS  Google Scholar 

  34. Wang, L., Liu, Y., Meng, F., et al.: A quantum moving target segmentation algorithm for grayscale video based on background difference method. EPJ Quantum Technol. 11, 26 (2024)

    ADS  Google Scholar 

  35. Wei, Z., Sun, W., Zhu, S., et al.: An efficient framework for quantum video and video editing. Int. J. Quantum Inf. 21, 2350024 (2023)

    MathSciNet  Google Scholar 

  36. Xia, H., Li, H., Zhang, H., et al.: Novel multi-bit quantum comparators and their application in image binarization. Quantum Inf. Process. 18, 229 (2019)

    ADS  MathSciNet  Google Scholar 

  37. Xu, J., Li, X., Han, Y., et al.: Quantitative security analysis of three-level unitary operations in quantum secret sharing without entanglement. Front. Phys. 11, 1213153 (2023)

    Google Scholar 

  38. Yan, F., Iliyasu, A.M., Khan, A.: Measurements-based moving target detection in quantum video. Int. J. Theor. Phys. 55, 2162–2173 (2016)

    Google Scholar 

  39. Yao, X.W., Wang, H., Liao, Z., et al.: Quantum image processing and its application to edge detection: theory and experiment. Phys. Rev. X 7, 3 (2017)

    Google Scholar 

  40. Yuan, S., Wen, C., Hang, B., et al.: The dual-threshold quantum image segmentation algorithm and its simulation. Quantum Inf. Process. 19, 425 (2020)

    ADS  Google Scholar 

  41. Yuan, S., Gao, S., Wen, C., Wang, Y., Qu, H., Wang, Y.: A novel fault-tolerant quantum divider and its simulation. Quantum Inf. Process. 21, 182 (2022)

    ADS  MathSciNet  Google Scholar 

  42. Zhang, Y., Kai, L., Gao, Y., et al.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12, 2833–2860 (2013)

    ADS  MathSciNet  Google Scholar 

  43. Zhou, R.G., Liu, D.Q.: Quantum image edge extraction based on improved Sobel operator. Int. J. Theor. Phys. 2019(58), 2969–2985 (2019)

    MathSciNet  Google Scholar 

  44. Zhou, R.G., Tan, C., Ian, H.: Global and local translation designs of quantum image based on FRQI. Int. J. Theor. Phys. 56, 1382 (2017)

    MathSciNet  Google Scholar 

  45. Zhou, R., Yu, H., Cheng, Y.: Quantum image edge extraction based on improved Prewitt operator. Quantum Inf. Process. 18, 261 (2019)

    ADS  Google Scholar 

  46. Zhu, D., Zheng, J., Zhou, H., Wu, J., Li, N., Song, L.: A hybrid encryption scheme for quantum secure video conferencing combined with blockchain. Mathematics 10, 3037 (2022)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (62471126), the Jiangsu Key R &D Program Project (BE2023011-2), the Fundamental Research Funds for the Central Universities (2242022k60001), the SEU Innovation Capability Enhancement Plan for Doctoral Students(CXJH_SEU 24078) and the Jiangsu Funding Program for Excellent Postdoctoral Talent (2022ZB139).

Author information

Authors and Affiliations

Authors

Contributions

Lu Wang wrote the main manuscript text. Lu Wang, Yuxiang Liu, Fanxu Meng, Zaichen Zhang and Xutao Yu designed the experiments and conducted analysis. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xutao Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liu, Y., Meng, F. et al. A quantum moving target segmentation algorithm based on mean background modeling. Quantum Inf Process 23, 370 (2024). https://doi.org/10.1007/s11128-024-04578-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04578-5

Keywords