Abstract
Quantum energy teleportation (QET) protocol illustrates that through local operations and classical communication, the local energy of the ground state of a many-body quantum system can be extracted. Unlike classical energy transmission, dissipation effects are greatly reduced in quantum energy teleportation. Energy extraction only requires classical information and local operations about the measurements. Quantum resources play a key role in this protocol, giving QET protocol quantum advantages over classical energy transmission. In this paper, we investigate the role of quantum resources in quantum energy teleportation. We find that quantum resources can improve the energy extraction efficiency of QET, and find the necessary and sufficient conditions for the minimal QET. We construct a quantum circuit for simulation of the minimal QET model and provide the numerical results of QET in Gibbs state and spin-chain system to verify our conclusions.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availibility
No datasets were generated or analysed during the current study.
References
Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Hotta, M.: Quantum measurement information as a key to energy extraction from local vacuums. Phys. Rev. D 78, 045006 (2008)
Frey, M., Funo, K., Hotta, M.: Strong local passivity in finite quantum systems. Phys. Rev. E 90, 012127 (2014)
Hotta, M.: A protocol for quantum energy distribution. Phys. Lett. A 372, 5671–5676 (2008)
Hotta, M.: Quantum energy teleportation in spin chain systems. J. Phys. Soc. Jpn. 78, 034001 (2009)
Trevison, J., Hotta, M.: Quantum energy teleportation across a three-spin ising chain in a gibbs state. J. Phys. A: Math. Theor. 48, 175302 (2015)
Hotta, M.: Quantum energy teleportation with trapped ions. Phys. Rev. A 80, 042323 (2009)
Hotta, M.: Quantum energy teleportation with an electromagnetic field: discrete versus continuous variables. J. Phys. A: Math. Theor. 43, 105305 (2010)
Hotta, M., Matsumoto, J., Yusa, G.: Quantum energy teleportation without a limit of distance. Phys. Rev. A 89, 012311 (2014)
Ikeda, K.: Criticality of quantum energy teleportation at phase transition points in quantum field theory. Phys. Rev. D 107, L071502 (2023)
Braunstein, S.L., Pati, A.K.: Quantum information cannot be completely hidden in correlations: implications for the black-hole information paradox. Phys. Rev. Lett. 98, 080502 (2007)
Hayden, P., Preskill, J.: Black holes as mirrors: quantum information in random subsystems. J. High Energy Phys. 2007, 120 (2007)
Hosoya, A., Carlini, A.: Quantum entropy bound by information in black hole spacetime. Phys. Rev. D 66, 104011 (2002)
Funai, N., Martín-Martínez, E.: Engineering negative stress-energy densities with quantum energy teleportation. Phys. Rev. D 96, 025014 (2017)
Hotta, M.: Controlled hawking process by quantum energy teleportation. Phys. Rev. D 81, 044025 (2010)
Yusa, G., Izumida, W., Hotta, M.: Quantum energy teleportation in a quantum hall system. Phys. Rev. A 84, 032336 (2011)
Rodríguez-Briones, N.A., Katiyar, H., Martín-Martínez, E., Laflamme, R.: Experimental activation of strong local passive states with quantum information. Phys. Rev. Lett. 130, 110801 (2023)
Ikeda, K.: Demonstration of quantum energy teleportation on superconducting quantum hardware. Phys. Rev. Applied 20, 024051 (2023)
Hotta, M.: Energy entanglement relation for quantum energy teleportation. Phys. Lett. A 374, 3416–3421 (2010)
Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019)
Brandao, F.G., Gour, G.: Reversible framework for quantum resource theories. Phys. Rev. Lett. 115, 070503 (2015)
Gour, G., Müller, M.P., Narasimhachar, V., Spekkens, R.W., Halpern, N.Y.: The resource theory of informational nonequilibrium in thermodynamics. Phys. Rep. 583, 1–58 (2015)
Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)
Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)
Hill, S.A., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2010)
Frey, M.R., Gerlach, K., Hotta, M.: Quantum energy teleportation between spin particles in a gibbs state. J. Phys. A: Math. Theor. 46, 455304 (2013)
Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221 (1978)
Ikeda, K.: Long-range quantum energy teleportation and distribution on a hyperbolic quantum network. arXiv:2301.11884 (2023)
Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)
Wehner, S., Elkouss, D., Hanson, R.: Quantum internet: a vision for the road ahead. Science 362, eaamm9288 (2018)
Chen, Y.A., et al.: An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 589, 214–219 (2021)
Gyongyosi, L., Imre, S., Nguyen, H.V.: A survey on quantum channel capacities. Ieee Commun. Surv. Tut. 20, 1149–1205 (2018)
Gyongyosi, L., Imre, S.: Advances in the quantum internet. Commun. ACM 65, 52–63 (2022)
Boaron, A., et al.: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502 (2018)
Gyongyosi, L., Imre, S.: Decentralized base-graph routing for the quantum internet. Phys. Rev. A 98, 022310 (2018)
Lloyd, S.: Capacity of the noisy quantum channel. Phys. Rev. A 55, 1613 (1997)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant No.12175179), the Peng Huanwu Center for Fundamental Theory (Grant No.12247103), the Natural Science Basic Research Program of Shaanxi Province (Grant No. 2021JCW-19 and No. 2019JQ-863).
Author information
Authors and Affiliations
Contributions
Hao Fan, Feng-Lin Wu and Si-Yuan Liu wrote the main manuscript text and Hao Fan prepared figures. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Fan, H., Wu, FL., Wang, L. et al. The role of quantum resources in quantum energy teleportation. Quantum Inf Process 23, 367 (2024). https://doi.org/10.1007/s11128-024-04579-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04579-4