Skip to main content
Log in

The role of quantum resources in quantum energy teleportation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum energy teleportation (QET) protocol illustrates that through local operations and classical communication, the local energy of the ground state of a many-body quantum system can be extracted. Unlike classical energy transmission, dissipation effects are greatly reduced in quantum energy teleportation. Energy extraction only requires classical information and local operations about the measurements. Quantum resources play a key role in this protocol, giving QET protocol quantum advantages over classical energy transmission. In this paper, we investigate the role of quantum resources in quantum energy teleportation. We find that quantum resources can improve the energy extraction efficiency of QET, and find the necessary and sufficient conditions for the minimal QET. We construct a quantum circuit for simulation of the minimal QET model and provide the numerical results of QET in Gibbs state and spin-chain system to verify our conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availibility

No datasets were generated or analysed during the current study.

References

  1. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. Hotta, M.: Quantum measurement information as a key to energy extraction from local vacuums. Phys. Rev. D 78, 045006 (2008)

    Article  ADS  Google Scholar 

  3. Frey, M., Funo, K., Hotta, M.: Strong local passivity in finite quantum systems. Phys. Rev. E 90, 012127 (2014)

    Article  ADS  Google Scholar 

  4. Hotta, M.: A protocol for quantum energy distribution. Phys. Lett. A 372, 5671–5676 (2008)

    Article  ADS  Google Scholar 

  5. Hotta, M.: Quantum energy teleportation in spin chain systems. J. Phys. Soc. Jpn. 78, 034001 (2009)

    Article  ADS  Google Scholar 

  6. Trevison, J., Hotta, M.: Quantum energy teleportation across a three-spin ising chain in a gibbs state. J. Phys. A: Math. Theor. 48, 175302 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. Hotta, M.: Quantum energy teleportation with trapped ions. Phys. Rev. A 80, 042323 (2009)

    Article  ADS  Google Scholar 

  8. Hotta, M.: Quantum energy teleportation with an electromagnetic field: discrete versus continuous variables. J. Phys. A: Math. Theor. 43, 105305 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  9. Hotta, M., Matsumoto, J., Yusa, G.: Quantum energy teleportation without a limit of distance. Phys. Rev. A 89, 012311 (2014)

    Article  ADS  Google Scholar 

  10. Ikeda, K.: Criticality of quantum energy teleportation at phase transition points in quantum field theory. Phys. Rev. D 107, L071502 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  11. Braunstein, S.L., Pati, A.K.: Quantum information cannot be completely hidden in correlations: implications for the black-hole information paradox. Phys. Rev. Lett. 98, 080502 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  12. Hayden, P., Preskill, J.: Black holes as mirrors: quantum information in random subsystems. J. High Energy Phys. 2007, 120 (2007)

    Article  MathSciNet  Google Scholar 

  13. Hosoya, A., Carlini, A.: Quantum entropy bound by information in black hole spacetime. Phys. Rev. D 66, 104011 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  14. Funai, N., Martín-Martínez, E.: Engineering negative stress-energy densities with quantum energy teleportation. Phys. Rev. D 96, 025014 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. Hotta, M.: Controlled hawking process by quantum energy teleportation. Phys. Rev. D 81, 044025 (2010)

    Article  ADS  Google Scholar 

  16. Yusa, G., Izumida, W., Hotta, M.: Quantum energy teleportation in a quantum hall system. Phys. Rev. A 84, 032336 (2011)

    Article  ADS  Google Scholar 

  17. Rodríguez-Briones, N.A., Katiyar, H., Martín-Martínez, E., Laflamme, R.: Experimental activation of strong local passive states with quantum information. Phys. Rev. Lett. 130, 110801 (2023)

    Article  ADS  Google Scholar 

  18. Ikeda, K.: Demonstration of quantum energy teleportation on superconducting quantum hardware. Phys. Rev. Applied 20, 024051 (2023)

    Article  ADS  Google Scholar 

  19. Hotta, M.: Energy entanglement relation for quantum energy teleportation. Phys. Lett. A 374, 3416–3421 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  21. Brandao, F.G., Gour, G.: Reversible framework for quantum resource theories. Phys. Rev. Lett. 115, 070503 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Gour, G., Müller, M.P., Narasimhachar, V., Spekkens, R.W., Halpern, N.Y.: The resource theory of informational nonequilibrium in thermodynamics. Phys. Rep. 583, 1–58 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  25. Hill, S.A., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  26. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  27. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  28. Frey, M.R., Gerlach, K., Hotta, M.: Quantum energy teleportation between spin particles in a gibbs state. J. Phys. A: Math. Theor. 46, 455304 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  29. Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  30. Ikeda, K.: Long-range quantum energy teleportation and distribution on a hyperbolic quantum network. arXiv:2301.11884 (2023)

  31. Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  32. Wehner, S., Elkouss, D., Hanson, R.: Quantum internet: a vision for the road ahead. Science 362, eaamm9288 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  33. Chen, Y.A., et al.: An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 589, 214–219 (2021)

    Article  ADS  Google Scholar 

  34. Gyongyosi, L., Imre, S., Nguyen, H.V.: A survey on quantum channel capacities. Ieee Commun. Surv. Tut. 20, 1149–1205 (2018)

    Article  Google Scholar 

  35. Gyongyosi, L., Imre, S.: Advances in the quantum internet. Commun. ACM 65, 52–63 (2022)

    Article  Google Scholar 

  36. Boaron, A., et al.: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502 (2018)

    Article  ADS  Google Scholar 

  37. Gyongyosi, L., Imre, S.: Decentralized base-graph routing for the quantum internet. Phys. Rev. A 98, 022310 (2018)

    Article  ADS  Google Scholar 

  38. Lloyd, S.: Capacity of the noisy quantum channel. Phys. Rev. A 55, 1613 (1997)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.12175179), the Peng Huanwu Center for Fundamental Theory (Grant No.12247103), the Natural Science Basic Research Program of Shaanxi Province (Grant No. 2021JCW-19 and No. 2019JQ-863).

Author information

Authors and Affiliations

Authors

Contributions

Hao Fan, Feng-Lin Wu and Si-Yuan Liu wrote the main manuscript text and Hao Fan prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Si-Yuan Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, H., Wu, FL., Wang, L. et al. The role of quantum resources in quantum energy teleportation. Quantum Inf Process 23, 367 (2024). https://doi.org/10.1007/s11128-024-04579-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04579-4

Keywords