Skip to main content

Advertisement

Log in

Layered quantum secret sharing scheme for private data in cloud environment system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Secret sharing is a cryptographic technique that divides secrets into separate stores in order to spread risks and tolerate intrusions. As cloud storage is used by more and more organizations and institutions to store private information, using secret sharing to split private data is a good way to solve the privacy leakage in network transmission and storage. The interaction between several particles in quantum entanglement can encode and distribute secrets, providing a more secure means for the development of secret sharing. Quantum secret sharing (QSS) relies on the uncertainty and non-clonability of quantum mechanics to ensure the security of secrets and eavesdropping monitoring. Using QSS provides a new security strategy for the development of cloud storage. In this paper, we propose a QSS scheme based on multi-particle entanglement to the problem of private quantum information being dispersed on cloud memory, and users can recover private information with permission. In the cloud environment, choosing multiple cloud service providers to decentralize the storage of information is more secure than traditional storage methods, avoiding the cloud server itself to steal secrets. Security analysis shows that even if more than half of the cloud servers are compromised, the secret will not be leaked, and the secret can be restored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Wang, F., Wu, Y., Huang, F.: Rio: a personal storage system in multi-device and cloud. J. Supercomput. 76, 2315–2338 (2020)

    Article  Google Scholar 

  2. Bedi, R.K., Singh, J., Gupta, S.K.: MWC: an efficient and secure multi-cloud storage approach to leverage augmentation of multi-cloud storage services on mobile devices using fog computing. J. Supercomput. 75, 3264–3287 (2019)

    Article  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  4. Karthik, M., Lalwani, J., Jajodia, B.: Quantum Text Teleportation Protocol for Secure Text Transfer by using Quantum Teleportation and Huffman Coding. In: 2022 International Conference on Trends in Quantum Computing and Emerging Business Technologies (TQCEBT), 2022, pp. 1–6.

  5. Zhi-Xi, F.L.: Controlled quantum teleportation and secure direct communication. Chin. Phys. 14, 893 (2005)

    Article  ADS  Google Scholar 

  6. Bennett, C.H., Bessette, F., Brassard, G., et al.: Experimental quantum cryptography. J. Cryptol. 5, 3 (1992)

    Article  Google Scholar 

  7. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bennett, C.H.: Quantum Cryptography: Public Key Distribution and Coin Tossing. In: Proc of IEEE International Conference on Computers, 1984.

  9. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996)

    Article  ADS  Google Scholar 

  10. Zhang, J., Peng, K.: Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state. Phys. Rev. A 62, 064302 (2000)

    Article  ADS  Google Scholar 

  11. Dong, L., Dong, H.-K., Xiu, X.-M., Gao, Y.-J., Chi, F.: quantum secure direct communication using a six-qubit maximally entangled state with dense coding. Int. J. Quantum Inform. 07, 645–651 (2009)

    Article  Google Scholar 

  12. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  13. Wang, X.W., Xia, L.X., Wang, Z.Y., Zhang, D.Y.: Hierarchical quantum information splitting. Opt. Commun. 283, 1196–1199 (2010)

    Article  ADS  Google Scholar 

  14. Wang, X.-W., Zhang, D.-Y., Tang, S.-Q., Zhan, X.-G., You, K.-M.: Hierarchical quantum information splitting with six-photon cluster states. Int. J. Theor. Phys. 49, 2691–2697 (2010)

    Article  MathSciNet  Google Scholar 

  15. Xu, G., Wang, C., Yang, Y.-X.: Hierarchical quantum information splitting of an arbitrary two-qubit state via the cluster state. Quantum Inf. Process. 13, 43–57 (2014)

    Article  ADS  Google Scholar 

  16. Tang, J., Ma, S., Li, Q.: Universal hierarchical quantum information splitting schemes of an arbitrary multi-qubit state. Int. J. Theor. Phys. 61, 209 (2022)

    Article  MathSciNet  Google Scholar 

  17. Ortu, A., Holzäpfel, A., Etesse, J., Afzelius, M.: Storage of photonic time-bin qubits for up to 20 ms in a rare-earth doped crystal. Npj Quantum Inform. 8, 29 (2022)

    Article  ADS  Google Scholar 

  18. Liu, X., Li, D., Zheng, Y., Liu, M., Yang, X., Zhou, J., et al.: Quantum information splitting of an arbitrary five-qubit state using four-qubit entangled states. Int. J. Theor. Phys. 61, 220 (2022)

    Article  MathSciNet  Google Scholar 

  19. Xu, G., Shan, R.-T., Chen, X.-B., Dong, M., Chen, Y.-L.: Probabilistic and hierarchical quantum information splitting based on the non-maximally entangled cluster state. Comput. Mater. Continua. 69, 339–349 (2021)

    Article  Google Scholar 

  20. Ding, X., Yifei, W., Zhao, D., Jian, L., Xiubo, C., Lixiang, L.: Efficient semi-quantum secret sharing protocol using single particles. Chin. Phys. B 32, 070308 (2023)

    Article  Google Scholar 

  21. Cabello, A.: Quantum key distribution in the holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

  22. Ampatzis, M., Andronikos, T.: A symmetric Extensible Protocol for Quantum Secret Sharing. arXiv e-prints. 2022.

  23. Jassem, Y., Abdullah, A.: Enhancement of Quantum Key Distribution Protocol for Data Security in Cloud Environment. 2020, 11, 279-88.

  24. AlZain, M.A., Li, A.S., Soh, B., Pardede, E. Multi-Cloud Data Management using Shamir's Secret Sharing and Quantum Byzantine Agreement Schemes. 2015, 5, 35–52.

  25. Wang, W., Li, Z., Owens, R., Bhargava, B.K.: Secure and efficient access to outsourced data. Cloud Computing Security Workshop. 2009.

  26. Anada, H., Kawamoto, J., Ke, C., Morozov, K., Sakurai, K.: Cross-group secret sharing scheme for secure usage of cloud storage over different providers and regions. J. Supercomput. 73, 4275–4301 (2017)

    Article  Google Scholar 

  27. Han, R., Wang, Y., Wan, M., Yuan, T., Sun, G.: FIBPRO: peer-to-peer data management and sharing cloud storage system based on blockchain. Peer-to-Peer Netw. Appl. 16, 2850–2864 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research and Development Plan Project of Liaocheng City, Research on Integrated Wireless Resource Allocation and Control of Autonomous Driving Fleet Based on 5G Technology (Grant No. 2022 YDSF14), the Research and Practice on Optimizing the Output oriented Curriculum System of Electronic Information Engineering of Liaocheng University Dongchang College (Grant No. 2023JGA02), the Chongqing Municipal Education Commission Science and Technology Research Program Youth Projects (Grant No. KJQN202302401; Grant No. KJQN202202401).

Author information

Authors and Affiliations

Authors

Contributions

Xiyuan Ma: Creativity and Designed the protocol. Chaonan Wang: Prepared the tables and figures. Lu Zhang: Prepared the figures. Yan Sun: Wrote the main manuscript text. Hongfeng Zhu: Creativity and Verification. All authors reviewed the manuscript and discussed some main problems.

Corresponding authors

Correspondence to Yan Sun or Hongfeng Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Wang, C., Zhang, L. et al. Layered quantum secret sharing scheme for private data in cloud environment system. Quantum Inf Process 23, 375 (2024). https://doi.org/10.1007/s11128-024-04585-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04585-6

Keywords