Skip to main content

Advertisement

Log in

Fast generation of GHZ state by designing the evolution operators with Rydberg superatom

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose an efficient scheme to fast generate three-particle Greenberger–Horne–Zeilinger (GHZ) state based on quantum Zeno dynamics and designing the evolution operators with Rydberg superatom. In the present scheme, the quantum information is encoded in the collective states of superatom which contains n individual four-level inverted Y-type Rydberg atoms, and the Rabi frequency can be fitted to a Gaussian function, which favors experimental feasibility. In addition, the influence of various decoherence factors such as atomic spontaneous emission, cavity decay and fiber leakage is also considered. The numerical simulation result shows that the present scheme is robust against decoherence and operational imperfection. At last, we generalize this scheme to the generation of N-particle GHZ state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  Google Scholar 

  2. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S.L.: Advances in quantum teleportation. Nat. Photonics 9, 641–652 (2015)

    ADS  Google Scholar 

  3. Barenco, A., Ekert, A.K.: Dense coding based on quantum entanglement. J. Mod. Opt. 42, 1253–1259 (1995)

    ADS  Google Scholar 

  4. Hao, J.C., Li, C.F., Guo, G.C.: Controlled dense coding using the Greenberger-Horne-Zeilinger state. Phys. Rev. A 63, 054301 (2001)

    ADS  Google Scholar 

  5. Jing, J., Zhang, J., Yan, Y., Zhao, F., Xie, C., Peng, K.: Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys. Rev. Lett. 90, 167903 (2003)

    ADS  Google Scholar 

  6. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    ADS  Google Scholar 

  7. Pirandola, S., Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C.: Advances in quantum cryptography. Adv. Opt. Photonics 12, 1012–1236 (2020)

    ADS  Google Scholar 

  8. Portmann, C., Renner, R.: Security in quantum cryptography. Rev. Mod. Phys. 94, 025008 (2022)

    ADS  MathSciNet  Google Scholar 

  9. DiVincenzo, D.P.: Quantum computation. Science 270, 255–261 (1995)

    ADS  MathSciNet  Google Scholar 

  10. Briegel, H.J., Browne, D.E., Dür, W., Raussendorf, R., Van den Nest, M.: Measurement-based quantum computation. Nat. Phys. 5, 19–26 (2009)

    Google Scholar 

  11. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 303–332 (1999)

    ADS  MathSciNet  Google Scholar 

  12. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    ADS  MathSciNet  Google Scholar 

  13. Bouwmeester, D., Pan, J.W., Daniell, M., Weinfurter, H., Zeilinger, A.: Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82, 1345 (1999)

    ADS  MathSciNet  Google Scholar 

  14. Hao, J.C., Li, C.F., Guo, G.C.: Controlled dense coding using the Greenberger-Horne-Zeilinger state. Phys. Rev. A 63, 054301 (2001)

    ADS  Google Scholar 

  15. Qin, H., Dai, Y.: Dynamic quantum secret sharing by using D-dimensional GHZ state. Quantum Inf. Process. 16, 1–13 (2017)

    MathSciNet  Google Scholar 

  16. Bastin, T., Thiel, C., Von Zanthier, J., Lamata, L., Solano, E., Agarwal, G.S.: Operational determination of multiqubit entanglement classes via tuning of local operations. Phys. Rev. Lett. 102, 053601 (2009)

    ADS  Google Scholar 

  17. Barrett, S.D., Kok, P.: Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060310 (2005)

    ADS  Google Scholar 

  18. Ji, Y.Q., Jin, Z., Zhu, A.D., Wang, H.F., Zhang, S.: Concentration of multi-photon entanglement with linear optics assisted by quantum nondemolition detection. JOSA B 31, 994–999 (2014)

    ADS  Google Scholar 

  19. Gerry, C.C.: Proposal for a mesoscopic cavity QED realization of the Greenberger-Horne-Zeilinger state. Phys. Rev. A 54, R2529 (1996)

    ADS  Google Scholar 

  20. Guo, G.P., Li, C.F., Li, J., Guo, G.C.: Scheme for the preparation of multiparticle entanglement in cavity QED. Phys. Rev. A 65, 042102 (2002)

    ADS  Google Scholar 

  21. Ye, L., Yu, L.B., Guo, G.C.: Generation of entangled states in cavity QED. Phys. Rev. A 72, 034304 (2005)

    ADS  Google Scholar 

  22. Yang, Z.B.: Generation of four-particle GHZ states in bimodal cavity QED. Chin. Phys. 16, 1963 (2007)

    Google Scholar 

  23. Chen, Y.H., Xia, Y., Song, J., Chen, Q.Q.: Shortcuts to adiabatic passage for fast generation of Greenberger-Horne-Zeilinger states by transitionless quantum driving. Sci. Rep. 5, 15616 (2015)

  24. Ji, Y.Q., Li, H., Liu, Y.L., Zhang, D.W., Zhou, X.J., Xiao, R.J., Dong, L., Xiu, X.M.: Preparation of entangled states in multiple cavities. Laser Phys. Lett. 17, 085202 (2020)

    ADS  Google Scholar 

  25. Wei, L., Liu, Y., Nori, F.: Generation and control of Greenberger-Horne-Zeilinger entanglement in superconducting circuits. Phys. Rev. Lett. 96, 246803 (2006)

    ADS  Google Scholar 

  26. DiCarlo, L., Reed, M.D., Sun, L., Johnson, B.R., Chow, J.M., Gambetta, J.M., Frunzio, L., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574–578 (2010)

    ADS  Google Scholar 

  27. Song, C., Xu, K., Liu, W., Yang, C., Zheng, S.B., Deng, H., Xie, Q., Huang, K., Guo, Q., Zhang, L., Zhang, P., Xu, D., Zheng, D., Zhu, X., Wang, H., Chen, Y.A., Lu, C.Y., Han, S., Pan, J.W.: 10-qubit entanglement and parallel logic operations with a superconducting circuit. Phys. Rev. Lett. 119, 180511 (2017)

    ADS  Google Scholar 

  28. Feng, W., Zhang, G.Q., Su, Q.P., Zhang, J.X., Yang, C.P.: Generation of Greenberger-Horne-Zeilinger states on two-dimensional superconducting-qubit lattices via parallel multiqubit-gate operations. Phys. Rev. Appl 18, 064036 (2022)

    ADS  Google Scholar 

  29. Yu, W.R., Ji, X.: Fast preparing W state via a chosen path shortcut in circuit QED. Quantum Inf. Process. 18, 1–12 (2019)

    ADS  MathSciNet  Google Scholar 

  30. Chen, X., Ruschhaupt, A., Schmidt, S., del Campo, A., Guéry-Odelin, D., Muga, J.G.: Fast optimal frictionless atom cooling in harmonic traps: shortcut to adiabaticity. Phys. Rev. Lett. 104, 063002 (2010)

    ADS  Google Scholar 

  31. Chen, X., Lizuain, I., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.: Shortcut to adiabatic passage in two-and three-level atoms. Phys. Rev. Lett. 105, 123003 (2010)

    ADS  Google Scholar 

  32. Guéry-Odelin, D., Ruschhaupt, A., Kiely, A., Torrontegui, E., Martínez-Garaot, S., Muga, J.G.: Shortcuts to adiabaticity: concepts, methods, and applications. Rev. Mod. Phys. 91, 045001 (2019)

    ADS  MathSciNet  Google Scholar 

  33. Lewis, H.R., Jr., Riesenfeld, W.: An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 10, 1458–1473 (1969)

    ADS  MathSciNet  Google Scholar 

  34. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A 91, 012325 (2015)

    ADS  Google Scholar 

  35. Wu, J.L., Ji, X., Zhang, S.: Fast generations of tree-type three-dimensional entanglement via Lewis-Riesenfeld invariants and transitionless quantum driving. Sci. Rep. 6, 33669 (2016)

    ADS  Google Scholar 

  36. Berry, M.V.: Transitionless quantum driving. J. Phys. A: Math. Theor. 42, 365303 (2009)

    MathSciNet  Google Scholar 

  37. Ji, Y.Q., Liu, Y.L., Zhou, S.J., Xiu, X.M., Dong, L., Dong, H.K., Gao, Y.J., Yi, X.X.: Fast conversion of dicke states \(|{D_n^{(2)}}\rangle \) to \(|{D_{n+1}^{(2)}}\rangle \) by transitionless quantum driving. Phys. Rev. A 99, 023808 (2019)

    ADS  Google Scholar 

  38. Lim, R., Berry, M.: Superadiabatic tracking of quantum evolution. J. Phys. A: Math. Gen. 24, 3255 (1991)

    ADS  Google Scholar 

  39. Ibáñez, S., Chen, X., Muga, J.: Improving shortcuts to adiabaticity by iterative interaction pictures. Phys. Rev. A 87, 043402 (2013)

    ADS  Google Scholar 

  40. Wu, J.L., Su, S.L., Ji, X., Zhang, S.: Superadiabatic scheme for optimizing the fast generation of tree-type 3d entanglement. Ann. Phys. 386, 34–43 (2017)

    ADS  MathSciNet  Google Scholar 

  41. Song, X.K., Ai, Q., Qiu, J., Deng, F.G.: Physically feasible three-level transitionless quantum driving with multiple schrödinger dynamics. Phys. Rev. A 93, 052324 (2016)

    ADS  Google Scholar 

  42. Baksic, A., Ribeiro, H., Clerk, A.A.: Speeding up adiabatic quantum state transfer by using dressed states. Phys. Rev. Lett. 116, 230503 (2016)

    ADS  Google Scholar 

  43. Wu, J.L., Ji, X., Zhang, S.: Fast adiabatic quantum state transfer and entanglement generation between two atoms via dressed states. Sci. Rep. 7, 46255 (2017)

    ADS  Google Scholar 

  44. Kang, Y.H., Chen, Y.H., Shi, Z.C., Song, J., Xia, Y.: Fast preparation of W states with superconducting quantum interference devices by using dressed states. Phys. Rev. A 94, 052311 (2016)

    ADS  Google Scholar 

  45. Kang, Y.H., Chen, Y.H., Wu, Q.C., Huang, B.H., Xia, Y., Song, J.: Reverse engineering of a hamiltonian by designing the evolution operators. Sci. Rep. 6, 30151 (2016)

    ADS  Google Scholar 

  46. Stiesdal, N., Busche, H., Kumlin, J., Kleinbeck, K., Büchler, H.P., Hofferberth, S.: Observation of collective decay dynamics of a single rydberg superatom. Phys. Rev. Res. 2, 043339 (2020)

    Google Scholar 

  47. Zeiher, J., Schauß, P., Hild, S., Macrì, T., Bloch, I., Gross, C.: Microscopic characterization of scalable coherent rydberg superatoms. Phys. Rev. X 5, 031015 (2015)

  48. Stiesdal, N., Kumlin, J., Kleinbeck, K., Lunt, P., Braun, C., Paris-Mandoki, A., Tresp, C., Büchler, H.P., Hofferberth, S.: Observation of three-body correlations for photons coupled to a rydberg superatom. Phys. Rev. Lett. 121, 103601 (2018)

    ADS  Google Scholar 

  49. Pritchard, J.D., Maxwell, D., Gauguet, A., Weatherill, K.J., Jones, M., Adams, C.S.: Cooperative atom-light interaction in a blockaded Rydberg ensemble. Phys. Rev. Lett. 105, 193603 (2010)

    ADS  Google Scholar 

  50. Colombe, Y., Steinmetz, T., Dubois, G., Linke, F., Hunger, D., Reichel, J.: Strong atom-field coupling for bose-einstein condensates in an optical cavity on a chip. Nature 450, 272–276 (2007)

    ADS  Google Scholar 

  51. Zhang, W.Y., Wang, C.Q., Ji, Y.Q., Shao, Q.P., Wang, J.P., Wang, J., Yang, L.P., Dong, L., Xiu, X.M.: Fast preparation of W states by designing the evolution operators with Rydberg superatom. Adv. Quantum Technol. 7, 2300140 (2024)

    Google Scholar 

  52. Shao, X.-Q., Su, S.-L., Li, L., Nath, R., Wu, J.-H., Li, W.: Rydberg superatoms: an artificial quantum system for quantum information processing and quantum optics. Appl. Phys. Rev. 11, 031320 (2024)

    Google Scholar 

  53. Saffman, M., Walker, T.G., Mølmer, K.: Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313 (2010)

    ADS  Google Scholar 

  54. Ji, Y.Q., Liu, Y.L., Li, H., Zhou, X.J., Xiao, R.J., Dong, L., Xiu, X.M.: Fast preparation of Bell state and W state with Rydberg superatom. Quantum Inf. Process. 19, 1–12 (2020)

    ADS  MathSciNet  Google Scholar 

  55. Xing, T., Zhao, P., Tong, D.: Realization of nonadiabatic holonomic multiqubit controlled gates with rydberg atoms. Phys. Rev. A 104, 012618 (2021)

    ADS  MathSciNet  Google Scholar 

  56. Wu, J.L., Wang, Y., Han, J.X., Su, S.L., Xia, Y., Song, J., Jiang, Y.: Fast and robust multiqubit gates on Rydberg atoms by periodic pulse engineering. Adv. Quantum Technol. 5, 2200042 (2022)

    Google Scholar 

  57. Ji, Y.Q., Dai, C.M., Shao, X.Q., Yi, X.X.: Entangled state fusion with Rydberg atoms. Quantum Inf. Process. 16, 1–14 (2017)

    MathSciNet  Google Scholar 

  58. Zhao, P., Cui, X.-D., Xu, G., Sjöqvist, E., Tong, D.: Rydberg-atom-based scheme of nonadiabatic geometric quantum computation. Phys. Rev. A 96, 052316 (2017)

    ADS  Google Scholar 

  59. Paris-Mandoki, A., Braun, C., Kumlin, J., Tresp, C., Mirgorodskiy, I., Christaller, F., Büchler, H.P., Hofferberth, S.: Free-space quantum electrodynamics with a single Rydberg superatom. Phys. Rev. X 7, 041010 (2017)

    Google Scholar 

  60. Zhao, P., Wu, X., Xing, T., Xu, G., Tong, D.: Nonadiabatic holonomic quantum computation with Rydberg superatoms. Phys. Rev. A 98, 032313 (2018)

    ADS  Google Scholar 

  61. Liu, Y.L., Ji, Y.Q., Han, X., Cui, W.X., Zhang, S., Wang, H.F.: Fast conversion of three-particle Dicke states to four-particle Dicke states with Rydberg superatoms. Adv. Quantum Technol. 6, 2200173 (2023)

    Google Scholar 

  62. Facchi, P., Pascazio, S.: Quantum Zeno subspaces. Phys. Rev. Lett. 89, 080401 (2002)

    ADS  MathSciNet  Google Scholar 

  63. Facchi, P., Pascazio, S.: Quantum Zeno dynamics: mathematical and physical aspects. J. Phys. A: Math. Theor. 41, 493001 (2008)

    MathSciNet  Google Scholar 

  64. Schäfer, F., Herrera, I., Cherukattil, S., Lovecchio, C., Cataliotti, F.S., Caruso, F., Smerzi, A.: Experimental realization of quantum Zeno dynamics. Nat. Commun. 5, 3194 (2014)

    ADS  Google Scholar 

  65. Ji, Y.Q., Shao, X.Q., Yi, X.X.: Fusing atomic W states via quantum Zeno dynamics. Sci. Rep. 7, 1378 (2017)

    ADS  Google Scholar 

  66. Farhi, E., Goldstone, J., Gutmann, S. , Sipser, M.: Quantum computation by adiabatic evolution. arXiv preprint quant-ph/0001106 (2000)

  67. Roland, J., Cerf, N.J.: Quantum search by local adiabatic evolution. Phys. Rev. A 65, 042308 (2002)

    ADS  Google Scholar 

  68. Liu, S., Li, J., Yu, R., Wu, Y.: Achieving three-dimensional entanglement between two spatially separated atoms by using the quantum zeno effect. Phys. Rev. A 87, 062316 (2013)

    ADS  Google Scholar 

  69. Shan, W.-J., Xia, Y., Chen, Y.-H., Song, J.: Fast generation of n-atom greenberger-horne-zeilinger state in separate coupled cavities via transitionless quantum driving. Quantum Inf. Process. 15, 2359–2376 (2016)

    ADS  MathSciNet  Google Scholar 

  70. Shao, X.-Q., Zheng, T.-Y., Feng, X.-L., Oh, C., Zhang, S.: One-step implementation of the genuine fredkin gate in high-q coupled three-cavity arrays. JOSA B 31, 697–703 (2014)

    ADS  Google Scholar 

  71. Yang, L., Wang, J., Ji, Y., Wang, J., Zhang, Z., Liu, Y., Dong, L., Xiu, X.: Fast generation of ghz state with rydberg superatom by transitionless quantum driving. Eur. Phys. J. Plus 139, 1–12 (2024)

    ADS  Google Scholar 

  72. Chen, Z., Chen, Y.-H., Xia, Y., Song, J., Huang, B.-H.: Fast generation of three-atom singlet state by transitionless quantum driving. Sci. Rep. 6, 22202 (2016)

  73. Paris-Mandoki, A., Braun, C., Kumlin, J., Tresp, C., Mirgorodskiy, I., Christaller, F., Büchler, H.P., Hofferberth, S.: Free-space quantum electrodynamics with a single Rydberg superatom. Phys. Rev. X. 4, 041010 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Program of the Educational Office of LiaoNing Province of China (Grant Nos. LJ212410167045, LJKZ1015, LJ2020005, LJKZZ20220120), the Natural Science Foundation of LiaoNing Province (Grant Nos. 2020-BS-234, 2021-MS-317, 2022-MS-372), the Program of Liaoning BaiQianWan Talents Program (Grant No. 2021921096).

Author information

Authors and Affiliations

Authors

Contributions

J. P. Wang and Y. Q. Ji wrote the main manuscript text, J. P. Wang prepared figures 1-7. All authors reviewed the manuscript.

Corresponding author

Correspondence to Y. Q. Ji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J.P., Yang, L.P., Ji, Y.Q. et al. Fast generation of GHZ state by designing the evolution operators with Rydberg superatom. Quantum Inf Process 23, 377 (2024). https://doi.org/10.1007/s11128-024-04587-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04587-4

Keywords