Skip to main content
Log in

New q-ary quantum MDS codes of length strictly larger than \(q+1\)

  • Research
  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum information and quantum computation have become a hot topic in recent decades. Quantum error-correcting codes are useful and have many applications in quantum computations and quantum communications. We construct a new class of quantum Maximum Distance Separable (MDS) codes. Our construction is based on a recent result of Ball and Vilar (IEEE Trans Inf Theory 68:3796–3805, 2022). We study a large class of explicit polynomials and obtain their required arithmetical properties which imply construction of new q-ary quantum MDS codes of length strictly larger than \(q+1\), when q is odd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47, 3065–3072 (2001)

    Article  MathSciNet  Google Scholar 

  2. Bierbrauer, J., Edel, Y.: Quantum twisted codes. J. Combinat. Des. 8(3), 174–188 (2000)

    Article  MathSciNet  Google Scholar 

  3. Ball, S., Vilar, R.: Determining when a truncated generalised ReedSolomon code is Hermitian self-orthogonal. IEEE Trans. Inf. Theory 68, 3796–3805 (2022)

    Article  Google Scholar 

  4. Ball, S.: Some constructions of quantum MDS codes. Des. Codes Cryptogr. 89, 811–821 (2021)

    Article  MathSciNet  Google Scholar 

  5. Calderbank, A.R., Rains, E.M., Shor, P.W.: Quantum error correction via codes over GF (4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  6. Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015)

    Article  MathSciNet  Google Scholar 

  7. Fang, W., Wen, J., Fu, F.-W.: Quantum MDS codes with new length and large minimum distance. Discrete Math. 347(1), 113662 (2024)

    Article  MathSciNet  Google Scholar 

  8. Fang, W., Fu, F.-W.: Two new classes of quantum MDS codes. Finite Fields Appl. 53, 85–98 (2018)

    Article  MathSciNet  Google Scholar 

  9. Fang, W., Fu, F.-W.: Some new constructions of quantum MDS codes. IEEE Trans. Inf. Theory 65, 7840–7847 (2019)

    Article  MathSciNet  Google Scholar 

  10. Grassl, M., Beth, T., Röttler, M.: On optimal quantum codes. Int. J. Quantum Inf. 2, 757–775 (2004)

    Article  Google Scholar 

  11. Grassl, M., Rötteler, M.: Quantum MDS codes over small fields. In: Proc. IEEE Int. Symp. Inform. Theory (ISIT), Hong Kong, 14–19 June 2015, pp. 1104–1108

  12. Grassl, M., Beth, T.: Quantum BCH codes. In: Proc. Int. Symp. Theoretical Electrical Engineering Magdeburg, pp. 207–212 (1999)

  13. La Guardia, G.G.: New quantum MDS codes. IEEE Trans. Inf. Theory 57(8), 5551–5554 (2011)

    Article  MathSciNet  Google Scholar 

  14. Guo, G., Li, R., Liu, Y.: Application of Hermitian self-orthogonal GRS codes to some quantum MDS codes. Finite Fields Appl. 76, 10190 (2021)

    Article  MathSciNet  Google Scholar 

  15. Hu, L., Yue, Q., Zhu, X.: New quantum MDS codes from constacyclic codes. Chin. Ann. Math. 37B(6), 891–898 (2016)

    Article  MathSciNet  Google Scholar 

  16. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  17. Jin, L., Ling, S., Luo, J., Xing, C.: Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes. IEEE Trans. Inf. Theory 56(9), 4735–4740 (2010)

    Article  MathSciNet  Google Scholar 

  18. Jin, L., Xing, C.: Euclidean and Hermitian self-orthogonal algebraic geometry codes and their application to quantum codes. IEEE Trans. Inf. Theory 58, 5484–5489 (2012)

    Article  MathSciNet  Google Scholar 

  19. Jin, L., Xing, C.: A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 60, 2921–2925 (2015)

    MathSciNet  Google Scholar 

  20. Jin, L., Kan, H., Wen, J.: Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes. Des. Codes Cryptogr. 84(3), 463–471 (2017)

    Article  MathSciNet  Google Scholar 

  21. Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2), 1193–1197 (2013)

    Article  MathSciNet  Google Scholar 

  22. Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)

    Article  MathSciNet  Google Scholar 

  23. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)

    Article  MathSciNet  Google Scholar 

  24. Li, S., Xiong, M., Ge, G.: Pseudo-cyclic codes and the construction of quantum MDS codes. IEEE Trans. Inf. Theory 62, 1703–1710 (2016)

    Article  MathSciNet  Google Scholar 

  25. Li, Z., Xing, L., Wang, X.: Quantum generalized Reed-Solomon codes: unified framework for quantum maximum-distance-separable codes. Phys. Rev. A 77(1), 012308 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  26. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  27. Röttler, M., Grassl, M., Beth, T.: On quantum MDS codes. In: Proc. Int. Symp. Inf. Theory (ISIT), 2004, p. 356

  28. Shi, X., Yue, Q., Zhu, X.: Construction of some new quantum MDS codes. Finite Fields Appl. 46, 347–362 (2017)

    Article  MathSciNet  Google Scholar 

  29. Shi, X., Yue, Q., Chang, Y.: Some quantum MDS codes with large minimum distance from generalized Reed-Solomon codes. Cryptogr. Commun. 10, 1165–1182 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  30. Sok, L., Ezerman, M.F., Ling, S.: Four new families of quantum stabilizer codes from Hermitian self-orthogonal MDS codes. In: 12th International Symposium Topics in Coding (2023)

  31. Wang, L., Zhu, S.: New quantum MDS codes derived from constacyclic codes. Quantum Inf. Process. 14(3), 881–889 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  32. Zhang, T., Ge, G.: Quantum MDS codes with large minimum distance. Des. Codes Cryptogr. 83, 503–517 (2017)

    Article  MathSciNet  Google Scholar 

  33. Zhang, T., Ge, G.: Some new classes of quantum MDS codes from constacyclic codes. IEEE Trans. Inf. Theory 61, 5224–5228 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their valuable and detailed suggestions and comments, which improved the paper. This work has been supported by TÜBİTAK under 2244 project.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Ferruh Özbudak.

Ethics declarations

Conflict of interest

The authors have no Conflict of interest to declare that are relevant to the content of this article.

Ethical approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kırcalı, M., Özbudak, F. New q-ary quantum MDS codes of length strictly larger than \(q+1\). Quantum Inf Process 23, 387 (2024). https://doi.org/10.1007/s11128-024-04598-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04598-1

Keywords