Skip to main content
Log in

Quantum dialogue with one qubit to represent two bits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Two communicants can make use of quantum dialogue (QD) to exchange their private data in a secure efficient manner without preparing keys ahead. In order to increase the capacity of quantum communication, there were several QD protocols taking a photon in double degrees of freedom as their quantum resources recently. However, although they adopt different approaches to develop such a photon, these QD protocols have a common point—all making one degree of freedom represent only one bit. This paper proposes a novel method for one degree of freedom to symbolize two bits. Thus, its information density is twice that of these existing protocols. This will bring about a new QD of high information density. In a certain degree, its information-theoretical efficiencies can reach as high as 83.33%, more than the current maximum—66.67%. Moreover, the proposed method can also improve on cost and efficiency. Finally, the presented QD protocol is analysed turning out secure and without information leakage. Consequently, this work provides us a desirable QD alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Zhang Z.J., Man Z.X.: Secure direct bidirectional communication protocol using the Einstein–Podolsky–Rosen pair block. http://arxiv.org/pdf/quant-ph/0403215.pdf (2004)

  2. Zhang Z.J., Man Z.X.: Secure bidirectional quantum communication protocol without quantum channel. http://arxiv.org/pdf/quant-ph/0403217.pdf (2004)

  3. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)

    ADS  MathSciNet  Google Scholar 

  4. Man, Z.X., Xia, Y.J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(7), 1680–1682 (2006)

    ADS  Google Scholar 

  5. Ji, X., Zhang, S.: Secure quantum dialogue based on single-photon. Chin. Phys. 15(7), 1418–1420 (2006)

    Google Scholar 

  6. Man, Z.X., Xia, Y.J., Nguyen, B.A.: Quantum secure direct communication by using GHZ states and entanglement swapping. J. Phys. B-At. Mol. Opt. Phys. 39(18), 3855–3863 (2006)

    ADS  Google Scholar 

  7. Yang, Y.G., Wen, Q.Y.: Quasi-secure quantum dialogue using single photons. Sci. China Ser. GPhys. Mech. Astron. 50(5), 558–562 (2007)

    ADS  Google Scholar 

  8. Shan, C.J., Liu, J.B., Cheng, W.W., Liu, T.K., Huang, Y.X., Li, H.: Bidirectional quantum secure direct communication in driven cavity QED. Mod. Phys. Lett. B 23(27), 3225–3234 (2009)

    ADS  Google Scholar 

  9. Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum secure direct communication by using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)

    ADS  MathSciNet  Google Scholar 

  10. Tan, Y.G., Cai, Q.Y.: Classical correlation in quantum dialogue. Int. J. Quant. Inform. 6(2), 325–329 (2008)

    Google Scholar 

  11. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Comment on: “three-party quantum secure direct communication based on GHZ states.” Phys. Lett. A 372(18), 3333–3336 (2008)

    ADS  MathSciNet  Google Scholar 

  12. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci. China Ser. G Phys. Mech. Astron. 51(5), 559–566 (2008)

    ADS  Google Scholar 

  13. Shi, G.F., Xi, X.Q., Tian, X.L., Yue, R.H.: Bidirectional quantum secure communication based on a shared private Bell state. Opt. Commun. 282(12), 2460–2463 (2009)

    ADS  Google Scholar 

  14. Shi, G.F., Xi, X.Q., Hu, M.L., Yue, R.H.: Quantum secure dialogue by using single photons. Opt. Commun. 283(9), 1984–1986 (2010)

    ADS  Google Scholar 

  15. Shi, G.F.: Bidirectional quantum secure communication scheme based on Bell states and auxiliary particles. Opt. Commun. 283(24), 5275–5278 (2010)

    ADS  Google Scholar 

  16. Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283(10), 2288–2293 (2010)

    ADS  Google Scholar 

  17. Ye, T.Y.: Large payload bidirectional quantum secure direct communication without information leakage. Int. J. Quant. Inform. 11(5), 1350051 (2013)

    MathSciNet  Google Scholar 

  18. Ye, T.Y.: Quantum secure dialogue with quantum encryption. Commun. Theor. Phys. 62(3), 338–342 (2014)

    ADS  MathSciNet  Google Scholar 

  19. Huang, L.Y., Ye, T.Y.: A kind of quantum dialogue protocols without information leakage assisted by auxiliary quantum operation. Int. J. Theor. Phys. 54(8), 2494–2504 (2015)

    MathSciNet  Google Scholar 

  20. Wang, L.L., Ma, W.P., Shen, D.S., Wang, M.L.: Efficient bidirectional quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 54, 3443–3453 (2015)

    MathSciNet  Google Scholar 

  21. Zhang, C., Situ, H.Z.: Information leakage in efficient bidirectional quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55, 4702–4708 (2016)

    Google Scholar 

  22. Ye, T.Y., Li, H.K., Hu, J.L.: Information leakage resistant quantum dialogue with single photons in both polarization and spatial-mode degrees of freedom. Quantum Inf. Process. 20(6), 209 (2021)

    ADS  MathSciNet  Google Scholar 

  23. Lang, Y.-F.: Efficient quantum dialogue using a photon in double degrees of freedom. Int. J. Theor. Phys. 61(4), 105 (2022)

    MathSciNet  Google Scholar 

  24. Lang, Y.-F.: Improvement of information leakage resistant quantum dialogue with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 61(6), 173 (2022)

    MathSciNet  Google Scholar 

  25. Lang, Y.-F.: A quantum dialogue reduced by half unitary operations. Int. J. Theor. Phys. 62(3), 50 (2023)

    MathSciNet  Google Scholar 

  26. Bennett C.H., Brassard G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International conference on computers systems and signal processing, pp. 175–179. IEEE Press, Bangalore (1984)

  27. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    ADS  MathSciNet  Google Scholar 

  28. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    ADS  Google Scholar 

  29. Beige, A., Englert, B.G., Kurtsiefer, C., et al.: Secure communication with a publicly known key. Acta. Phys. Pol. A. 101, 357–368 (2002)

    ADS  Google Scholar 

  30. Geng, M.-J., Chen, Y., Xu, T.-J., Ye, T.-Y.: Single-state semiquantum private comparison based on Bell states. EPJ. Quant. Technol. 9, 36 (2022)

    Google Scholar 

  31. Ye, T.-Y., Li, H.-K., Hu, J.-L.: Semi-quantum key distribution with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 59(9), 2807–2815 (2020)

    Google Scholar 

  32. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    ADS  Google Scholar 

  33. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    ADS  Google Scholar 

  34. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    ADS  Google Scholar 

  35. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    ADS  Google Scholar 

  36. Jin, X.R., Ji, X., Zhang, Y.Q., Zhang, S., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1–2), 67–70 (2006)

    ADS  Google Scholar 

  37. Li, X.H., Li, C.Y., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16(8), 2149–2153 (2007)

    Google Scholar 

  38. Wang, T.J., Li, T., Du, F.F., Deng, F.G.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28(4), 040305 (2011)

    ADS  Google Scholar 

  39. Gu, B., Huang, Y.G., Fang, X., Zhang, C.Y.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20(10), 100309 (2011)

    ADS  Google Scholar 

  40. Sun, Z.W., Du, R.G., Long, D.Y.: Quantum secure direct communication with two-photon four-qubit cluster states. Int. J. Theor. Phys. 51, 1946–1952 (2012)

    Google Scholar 

  41. Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial- mode degrees of freedom. Int. J. Theor. Phys. 51, 2923–2929 (2012)

    Google Scholar 

  42. Wang, L.L., Ma, W.P., Wang, M.L., Shen, D.S.: Three-party quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55, 2490–2499 (2016)

    Google Scholar 

  43. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049–1052 (2005)

    ADS  Google Scholar 

  44. Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2896–2899 (2006)

    ADS  Google Scholar 

  45. Shannon, C.E.: Communication theory of secrecy system. Bell Syst. Tech. J. 28, 656–715 (1949)

    MathSciNet  Google Scholar 

  46. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    ADS  Google Scholar 

Download references

Acknowledgements

The author Yan-Feng Lang thanks Daughter Lang Duo-Zi for her support on this work and the Nanxun scholars program of ZJWEU (Grant No. RC2023010846).

Author information

Authors and Affiliations

Authors

Contributions

Yan-Feng Lang wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yan-Feng Lang.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, YF., Cai, CC. Quantum dialogue with one qubit to represent two bits. Quantum Inf Process 23, 396 (2024). https://doi.org/10.1007/s11128-024-04601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04601-9

Keywords