Skip to main content

Advertisement

Log in

A note on the lower bounds of genuine multipartite entanglement concurrence

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum entanglement plays a pivotal role in quantum information processing. Quantifying quantum entanglement is a challenging and essential research area within the field. This manuscript explores the relationships between bipartite entanglement concurrence, multipartite entanglement concurrence, and genuine multipartite entanglement (GME) concurrence. We derive lower bounds on GME concurrence from these relationships, demonstrating their superiority over existing results through rigorous proofs and numerical examples. Additionally, we investigate the connections between GME concurrence and other entanglement measures, such as tangle and global negativity, in multipartite quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

    Article  ADS  Google Scholar 

  2. De Riedmatten, H., Marcikic, I., Tittel, W., Zbinden, H., Collins, D., Gisin, N.: Long distance quantum teleportation in a quantum relay configuration. Phys. Rev. Lett. 92(4), 047904 (2004)

    Article  ADS  Google Scholar 

  3. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656 (1996)

    Article  ADS  Google Scholar 

  4. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  5. Di Vincenzo, D.P.: Quantum computation. Science 270, 255 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  6. Resch, K.J., Lundeen, J.S., Steinberg, A.M.: Quantum state preparation and conditional coherence. Phys. Rev. Lett. 88(11), 113601 (2022)

    Article  ADS  Google Scholar 

  7. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78(12), 2275 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  8. Chen, K., Albeverio, S., Fei, S.M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95(4), 040504 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. Yu, C.S., Song, H.S.: Multipartite entanglement measure. Phys. Rev. A 71(4), 042331 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  10. Horodecki, M.: Entanglement measures. Quantum Inf. Comput. 1(1), 3–26 (2001)

    MathSciNet  Google Scholar 

  11. Szalay, S.: Multipartite entanglement measures. Phys. Rev. A 92(4), 042329 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Wootters, W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1(1), 27–44 (2001)

    MathSciNet  Google Scholar 

  13. Gour, G.: Family of concurrence monotones and its applications. Phys. Rev. A 71(1), 012318 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  14. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78(26), 5022 (1997)

    Article  ADS  Google Scholar 

  15. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245 (1998)

    Article  ADS  Google Scholar 

  16. Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed multipartite quantum states. Phys. Rev. Lett. 95(26), 260502 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ma, Z.H., Chen, Z.H., Chen, J.L., Spengler, C., Gabriel, A., Huber, M.: Measure of genuine multipartite entanglement with computable lower bounds. Phys. Rev. A 83(6), 062325 (2011)

    Article  ADS  Google Scholar 

  18. Gurvits, L.: in Proceedings of the 35th ACM Symposium on the Theory of Computing (ACM Press, New York, 2003), pp. 10–19

  19. Li, M., Jia, L., Wang, J., Shen, S.Q., Fei, S.M.: Measure and detection of genuine multipartite entanglement for tripartite systems. Phys. Rev. A 96(5), 052314 (2017)

    Article  ADS  Google Scholar 

  20. Li, M., Wang, J., Shen, S.Q., Chen, Z., Fei, S.M.: Detection and measure of genuine tripartite entanglement with partial transposition and realignment of density matrices. Sci. Rep. 7(1), 17274 (2017)

    Article  ADS  Google Scholar 

  21. Xu, W., Zheng, Z.J., Zhu, C.J., Fei, S.M.: Measure and detection of genuine multipartite entanglement for \(n\)-partite systems. Eur. Phys. J. Plus 136(1), 1–14 (2021)

    Article  ADS  Google Scholar 

  22. Wang, J., Zhu, X.N., Li, M., Shen, S.Q., Fei, S.M.: An improved lower bound of genuine tripartite entanglement concurrence. Laser Phys. Lett. 18(12), 125201 (2021)

    Article  ADS  Google Scholar 

  23. Yu, C.S., Song, H.S.: Bipartite concurrence and localized coherence. Phys. Rev. A 80(2), 022324 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. Zhang, C.J., Gong, Y.X., Zhang, Y.S., Guo, G.C.: Observable estimation of entanglement for arbitrary finite-dimensional mixed states. Phys. Rev. A 78(4), 042308 (2008)

    Article  ADS  Google Scholar 

  25. Chen, Z.H., Ma, Z.H., Chen, J.L., Severini, S.: Improved lower bounds on genuine-multipartite-entanglement concurrence. Phys. Rev. A 85(6), 062320 (2012)

    Article  ADS  Google Scholar 

  26. Aolita, L., Mintert, F.: Measuring multipartite concurrence with a single factorizable observable. Phys. Rev. Lett. 97(5), 050501 (2006)

    Article  ADS  Google Scholar 

  27. Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93(23), 230501 (2004)

    Article  ADS  Google Scholar 

  28. Qi, X.: Detection and measure of genuine entanglement based on the realignment of density matrices for tripartite quantum states. Res. Phys. 57, 107371 (2024)

    Google Scholar 

  29. Rungta, P., Caves, C.M.: Concurrence-based entanglement measures for isotropic states. Phys. Rev. A 67(1), 012307 (2003)

    Article  ADS  Google Scholar 

  30. Wang, J., Li, M., Li, H., Fei, S.M., Li-Jost, X.: Bounds on multipartite concurrence and tangle. Quantum Inf. Process. 15, 4211–4218 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. Sharma, S.S., Sharma, N.K.: Negativity fonts, multiqubit invariants and four qubit maximally entangled states. Quantum Inf. Process. 11, 1695–1714 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  32. Zhang, L., Gao, T., Yan, F.: Relations among k-ME concurrence, negativity, polynomial invariants, and tangle. Quantum Inf. Process. 18, 1–21 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC No.11701568, 12075159, the Fundamental Research Funds for the Central Universities No.22CX03005A, 24CX03003A, the Shandong Provincial Natural Science Foundation for Quantum Science No. ZR2021LLZ002, Beijing Natural Science Foundation (Z190005), the Academician Innovation Platform of Hainan Province, and Academy for Multidisciplinary Studies, Capital Normal University.

Author information

Authors and Affiliations

Authors

Contributions

M.L. and R.Z. derived the main theorem, Y. D. performed the numerical simulation, and X.Z., S.S., L.L., and S.M.F. analyzed the results. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ming Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Dong, Y., Zhang, R. et al. A note on the lower bounds of genuine multipartite entanglement concurrence. Quantum Inf Process 23, 397 (2024). https://doi.org/10.1007/s11128-024-04607-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04607-3

Keywords