Abstract
Parrondo’s paradox refers to an unexpected effect when some combination of biased quantum walks shows a counterintuitive inversion of the bias direction. To date this effect was studied in the case of one-dimensional discrete-time quantum walks with deterministic sequences of two or more quantum coins and one shift operator. In the present work, we show that Parrondo’s paradox may also occur for one coin and two different shift operators which create deterministic periodic or aperiodic sequences. Moreover, we demonstrate how Parrondo’s paradox affects the time evolution of the walker-coin quantum entanglement for this kind of quantum walks.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.
References
Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687 (1993)
Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915 (1998)
Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pp. 37–49 (2001)
Konno, N.: Quantum random walks in one dimension. Quantum Inf. Process. 1, 345 (2002)
Kempe, J.: Quantum random walks. Contemp. Phys. 44, 307 (2003)
Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11, 1015 (2012)
Manouchehri, K., Wang, J.: Physical Implementation of Quantum Walks. Springer, Berlin (2014)
Portugal, R.: Quantum Walks and Search Algorithms. Springer, Cham (2018)
Neves, L., Puentes, G.: Photonic discrete-time quantum walks and applications. Entropy 20, 731 (2018)
Kadian, K., Garhwal, S., Kumar, A.: Quantum walk and its application domains: a systematic review. Comput. Sci. Rev. 41, 100419 (2021)
Parrondo, J.M.R.: Efficiency of Brownian motors. Workshop of the EEC HC &M Network on Complexity and Chaos (#ERBCHRX-CT940546), ISI Foundation, (Torino, Italy), 1996 (unpublished)
Harmer, G.P., Abbott, D.: Losing strategies can win by Parrondo’s paradox. Nature (London) 402, 864 (1999)
Parrondo, J.M.R., Harmer, G.P., Abbott, D.: New paradoxical games based on Brownian ratchets. Phys. Rev. Lett. 85, 5226 (2000)
Parrondo, J.M.R., Dinis, L.: Brownian motion and gambling: from ratchets to paradoxical games. Contemp. Phys. 45, 147 (2004)
Dinis, L.: Optimal sequence for Parrondo games. Phys. Rev. E 77, 021124 (2008)
Toral, R.: Cooperative Parrondo’s games. Fluct. Noise Lett. 1, 7 (2001)
Dinis, L., Parrondo, J.M.R.: Optimal strategies in collective Parrondo games. Europhys. Lett. 63, 319 (2003)
Kay, R.J., Johnson, N.F.: Winning combinations of history-dependent games. Phys. Rev. E 67, 056128 (2003)
Khan, S., Ramzan, M., Khan, M.K.: Quantum Parrondo’s games under decoherence. Int. J. Theor. Phys. 49, 31 (2010)
Xie, N.-G., Chen, Y., Ye, Y., Xu, G., Wang, L.-G., Wang, C.: Theoretical analysis and numerical simulation of Parrondo’s paradox game in space. Chaos Solitons Fractals 44, 401 (2011)
Ye, Y., Xie, N.-G., Wang, L., Cen, Y.-W.: The multi-agent Parrondo’s model based on the network evolution. Physica A 392, 5414 (2013)
Cheung, K.W., Ma, H.F., Wu, D., Lui, G.C., Szeto, K.Y.: Winning in sequential Parrondo games by players with short-term memory. J. Stat. Mech. Theory Exp. 2016, 054042 (2016)
Cheong, K.H., Saakian, D.B., Zadourian, R.: Allison mixture and the two-envelope problem. Phys. Rev. E 96, 062303 (2017)
Koh, J.M., Cheong, K.H.: New doubly-anomalous Parrondo’s games suggest emergent sustainability and inequality. Nonlinear Dyn. 96, 257 (2019)
Koh, J.M., Cheong, K.H.: Generalized solutions of Parrondo’s games. Adv. Sci. 7, 2001126 (2020)
Ye, Y., Zhang, X.-S., Liu, L., Xie, N.-G.: Effects of group interactions on the network Parrondo’s games. Physica A 583, 126271 (2021)
Lai, J.W., Cheong, K.H.: Boosting Brownian-inspired games with network synchronization. Chaos Solitons Fractals 168, 113136 (2023)
Miszczak, J.A.: Constructing games on networks for controlling the inequalities in the capital distribution. Physica A 594, 126997 (2022)
Harmer, G.P., Abbott, D.: A review of Parrondo’s paradox. Fluct. Noise Lett. 2, 71 (2002)
Abbott, D.: Asymmetry and disorder: a decade of Parrondo’s paradox. Fluct. Noise Lett. 9, 129 (2010)
Cheong, K.H., Koh, J.M., Jones, M.C.: Paradoxical survival: examining the Parrondo effect across biology. BioEssays 41, 1900027 (2019)
Lai, J.W., Cheong, K.H.: Social dynamics and Parrondo’s paradox: a narrative review. Nonlinear Dyn. 101, 1 (2020)
Lai, J.W., Cheong, K.H.: Parrondo’s paradox from classical to quantum: A review. Nonlinear Dyn. 100, 849 (2020)
Meyer, D.A., Blumer, H.: Parrondo games as lattice gas automata. J. Stat. Phys. 107, 225 (2002)
Flitney, A.P., Abbott, D., Johnson, N.F.: Quantum walks with history dependence. J. Phys. A 37, 7581 (2004)
Košik, J., Miszczak, J.A., Bužek, V.: Quantum Parrondo’s game with random strategies. J. Mod. Opt. 54, 2275 (2007)
Bulger, D., Freckleton, J., Twamley, J.: Position-dependent and cooperative quantum Parrondo walks. New J. Phys. 10, 093014 (2008)
Chandrashekar, C.M., Banerjee, S.: Parrondo’s game using a discrete-time quantum walk. Phys. Lett. A 375, 1553 (2011)
Flitney, A.P.: Quantum Parrondo’s games using quantum walks. arXiv:1209.2252
Li, M., Zhang, Y.-S., Guo, G.-C.: Quantum Parrondo’s games constructed by quantum random walks. Fluct. Noise Lett. 12, 1350024 (2013)
Pawela, Ł., Sładkowski, J.: Cooperative quantum Parrondo’s games. Phys. D (Amsterdam, Neth.) 256-257, 51 (2013)
Machida, T., Grünbaum, F.A.: Some limit laws for quantum walks with applications to a version of the Parrondo paradox. Quantum Inf. Process. 17, 241 (2018)
Rajendran, J., Benjamin, C.: Implementing Parrondo’s paradox with two-coin quantum walks. R. Soc. Open Sci. 5, 171599 (2018)
Rajendran, J., Benjamin, C.: Playing a true Parrondo’s game with a three-state coin on a quantum walk. Europhys. Lett. 122, 40004 (2018)
Jan, M., Xu, X.-Y., Wang, Q.-Q., Pan, W.-W., Han, Y.-J., Li, C.-F., Guo, G.C.: Study of Parrondo’s paradox regions in one-dimensional quantum walks. arXiv:2006.16585
Jan, M., Wang, Q.-Q., Xu, X.-Y., Pan, W.-W., Chen, Z., Han, Y.-J., Li, C.-F., Guo, G.-C., Abbott, D.: Experimental realization of Parrondo’s paradox in 1D quantum walks. Adv. Quantum Technol. 3, 1900127 (2020)
Lai, J.W., Tan, J.R.A., Lu, H., Yap, Z.R., Cheong, K.H.: Parrondo paradoxical walk using four-sided quantum coins. Phys. Rev. E 102, 012213 (2020)
Lai, J.W., Cheong, K.H.: Parrondo effect in quantum coin-toss simulations. Phys. Rev. E 101, 052212 (2020)
Pires, M.A., Duarte Queirós, S.M.: Parrondo’s paradox in quantum walks with time-dependent coin operators. Phys. Rev. E 102, 042124 (2020)
Lai, J.W., Cheong, K.H.: Chaotic switching for quantum coin Parrondo’s games with application to encryption. Phys. Rev. Res. 3, 022019 (2021)
Panda, D., Benjamin, C.: Order from chaos in quantum walks on cyclic graphs. Phys. Rev. A 104, 012204 (2021)
Walczak, Z., Bauer, J.H.: Parrondo’s paradox in quantum walks with deterministic aperiodic sequence of coins. Phys. Rev. E 104, 064209 (2021)
Naves, C.B., Pires, M.A., Soares-Pinto, D.O., Duarte Queirós, S.M.: Enhancing entanglement with the generalized elephant quantum walk from localized and delocalized states. Phys. Rev. A 106, 042408 (2022)
Panda, D.K., Govind, B.V., Benjamin, C.: Generating highly entangled states via discrete-time quantum walks with Parrondo sequences. Physica A 608, 128256 (2022)
Trautmann, G., Groiseau, C., Wimberger, S.: Parrondo’s paradox for discrete-time quantum walks in momentum space. Fluct. Noise Lett. 21, 2250053 (2022)
Walczak, Z., Bauer, J.H.: Parrondo’s paradox in quantum walks with three coins. Phys. Rev. E 105, 064211 (2022)
Fang, X.-X., An, K., Zhang, B.-T., Sanders, B.C., Lu, H.: Maximal coin-position entanglement generation in a quantum walk for the third step and beyond regardless of the initial state. Phys. Rev. A 107, 012433 (2023)
Jan, M., Khan, N.A., Xianlong, G.: Territories of Parrondo’s paradox and its entanglement dynamics in quantum walks. Eur. Phys. J. Plus 138, 65 (2023)
Mielke, A.: Quantum Parrondo games in low-dimensional Hilbert spaces. arXiv:2306.16845
Naves, C.B., Pires, M.A., Soares-Pinto, D.O., Duarte Queirós, S.M.: Quantum walks in two dimensions: controlling directional spreading with entangling coins and tunable disordered step operator. J. Phys. A 56, 125301 (2023)
Walczak, Z., Bauer, J.H.: Noise-induced Parrondo’s paradox in discrete-time quantum walks. Phys. Rev. E 108, 044212 (2023)
Kadiri, G.: Scouring Parrondo’s paradox in discrete-time quantum walks. Phys. Rev. A 110, 022421 (2024)
Cavazzoni, S., Razzoli, L., Ragazzi, G., Bordone, P., Paris, M.G.A.: Coin dimensionality as a resource in quantum metrology involving discrete-time quantum walks. Phys. Rev. A 109, 022432 (2024)
Mishra, A., Wen, T., Cheong, K.H.: Parrondo’s paradox in network communication: a routing strategy. Phys. Rev. Res. 6, 012037 (2024)
Razzoli, L., Cenedese, G., Bondani, M., Benenti, G.: Efficient implementation of discrete-time quantum walks on quantum computers. Entropy 26, 313 (2024)
Ximenes, J.J., Pires, M.A., Villas-Bôas, J.M.: Parrondo’s effect in continuous-time quantum walks. Phys. Rev. A 109, 032417 (2024)
Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85, 551 (1996)
Mendonça, J.P., de Moura, F.A.B.F., Lyra, M.L., Almeida, G.M.A.: Emergent nonlinear phenomena in discrete-time quantum walks. Phys. Rev. A 101, 062335 (2020)
Gong, L., Guo, X., Sun, J., Cheng, W., Zhao, S.: Wave packet spreading with periodic, Fibonacci quasi periodic, and random nonlinear discrete-time quantum walks. Quantum Inf. Process. 21, 393 (2022)
Bauer, J.H., Walczak, Z.: Entanglement entropy in a certain nonlinear discrete quantum walk model. Quantum Inf. Process. 23, 118 (2024)
Passos, F.S., Buarque, A.R.C.: Nonlinear flip-flop quantum walks through potential barriers. Phys. Rev. A 106, 062407 (2022)
Abal, G., Siri, R., Romanelli, A., Donangelo, R.: Quantum walk on the line: entanglement and nonlocal initial conditions. Phys. Rev. A 73, 042302 (2006)
Author information
Authors and Affiliations
Contributions
Z.W. prepared all calculations and figures. J.H.B. wrote the main manuscript text. Both authors reviewed the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Walczak, Z., Bauer, J.H. Parrondo’s paradox in quantum walks with different shift operators. Quantum Inf Process 23, 408 (2024). https://doi.org/10.1007/s11128-024-04614-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04614-4