Abstract
We present a scheme to generate nonreciprocal entanglement and asymmetric steering between an atomic ensemble and a magnon based on Kerr nonlinearity of magnon in an yttrium iron garnet sphere. In particular, a cavity optomagnonic system is under our consideration, where the optical cavity couples with an ensemble of N two-level atoms, and meanwhile nonlinearly interacts with the magnon mode via optomagnonic coupling. The results demonstrate that the steady-state macroscopic quantum correlations including magnon-atomic ensemble entanglement and Einstein–Podolsky–Rosen steering could be obtained via strongly driving the cavity mode. More importantly, tuning the direction of the static magnetic field leads to a positive or negative magnon Kerr coefficient, which leads to a corresponding shift in magnon frequency and thus induces the nonreciprocity of entanglement. Furthermore, the one-way steering between magnon and atomic ensemble is also shown via properly choosing the coupling strengths and effective Kerr parameters. Our work could have potential applications in the preparation of macroscopic quantum states and be applied to construct long-distance quantum networks.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data Availability
This manuscript has no associated data.
References
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009)
Leggett, A.J.: Macroscopic quantum systems and the quantum theory of measurement. Prog. Theor. Phys. Suppl. 69, 80–100 (1980)
Jeong, H., Lim, Y., Kim, M.: Coarsening measurement references and the quantum-to-classical transition. Phys. Rev. Lett. 112(1), 010402 (2014)
Fröwis, F., Sekatski, P., Dür, W., Gisin, N., Sangouard, N.: Macroscopic quantum states: measures, fragility, and implementations. Rev. Mod. Phys. 90(2), 025004 (2018)
Julsgaard, B., Kozhekin, A., Polzik, E.S.: Experimental long-lived entanglement of two macroscopic objects. Nature 413(6854), 400–403 (2001)
Krauter, H., Muschik, C.A., Jensen, K., Wasilewski, W., Petersen, J.M., Cirac, J.I., Polzik, E.S.: Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. 107(8), 080503 (2011)
Thomas, R.A., Parniak, M., Østfeldt, C., Møller, C.B., Bærentsen, C., Tsaturyan, Y., Schliesser, A., Appel, J., Zeuthen, E., Polzik, E.S.: Entanglement between distant macroscopic mechanical and spin systems. Nat. Phys. 17(2), 228–233 (2021)
Kotler, S., Peterson, G.A., Shojaee, E., Lecocq, F., Cicak, K., Kwiatkowski, A., Geller, S., Glancy, S., Knill, E., Simmonds, R.W., et al.: Direct observation of deterministic macroscopic entanglement. Science 372(6542), 622–625 (2021)
Lépinay, L., Ockeloen-Korppi, C.F., Woolley, M.J., Sillanpää, M.A.: Quantum mechanics-free subsystem with mechanical oscillators. Science 372(6542), 625–629 (2021)
Schrödinger, E.: Discussion of probability relations between separated systems. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 31, pp. 555–563 (1935). Cambridge University Press
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)
Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the einstein-podolsky-rosen paradox. Phys. Rev. Lett. 98(14), 140402 (2007)
Händchen, V., Eberle, T., Steinlechner, S., Samblowski, A., Franz, T., Werner, R.F., Schnabel, R.: Observation of one-way einstein-podolsky-rosen steering. Nat. Photonics 6(9), 596–599 (2012)
Wollmann, S., Walk, N., Bennet, A.J., Wiseman, H.M., Pryde, G.J.: Observation of genuine one-way Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 116(16), 160403 (2016)
Tischler, N., Ghafari, F., Baker, T.J., Slussarenko, S., Patel, R.B., Weston, M.M., Wollmann, S., Shalm, L.K., Verma, V.B., Nam, S.W., et al.: Conclusive experimental demonstration of one-way Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 121(10), 100401 (2018)
Qu, R., Zhang, C., Chang, Z.-H., Zhang, X.-L., Guo, Y., Hu, X.-M., Li, C.-F., Guo, G.-C., Zhang, P., Liu, B.-H.: Observation of diverse asymmetric structures in high-dimensional Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 132, 210202 (2024)
Liao, C.-G., Xie, H., Chen, R.-X., Ye, M.-Y., Lin, X.-M.: Controlling one-way quantum steering in a modulated optomechanical system. Phys. Rev. A 101(3), 032120 (2020)
Huang, X., Zeuthen, E., Gong, Q., He, Q.: Engineering asymmetric steady-state Einstein–Podolsky–Rosen steering in macroscopic hybrid systems. Phys. Rev. A 100(1), 012318 (2019)
Zhong, W., Zhao, D., Cheng, G., Chen, A.: One-way Einstein–Podolsky–Rosen steering of macroscopic magnons with squeezed light. Opt. Commun. 497, 127138 (2021)
Sun, F., Mao, D., Dai, Y., Ficek, Z., He, Q., Gong, Q.: Phase control of entanglement and quantum steering in a three-mode optomechanical system. New J. Phys. 19(12), 123039 (2017)
Wu, S.-X., Bai, C.-H., Li, G., Yu, C.-S., Zhang, T.: Enhancing the quantum entanglement and EPR steering of a coupled optomechanical system with a squeezed vacuum field. JOSAB 40(11), 2885–2893 (2023)
Soykal, Ö.O., Flatté, M.: Strong field interactions between a nanomagnet and a photonic cavity. Phys. Rev. Lett. 104(7), 077202 (2010)
Soykal, Ö., Flatté, M.: Size dependence of strong coupling between nanomagnets and photonic cavities. Phys. Rev. B 82(10), 104413 (2010)
Bloch, F.: Zur theorie des ferromagnetismus. Z. Phys. 61(3), 206–219 (1930)
Kong, C.: Study and application of optical transport effects in microcavity photon-phonon/magnon coupling systems. Master’s thesis, Huazhong University of Science and Technology (2020)
Zhang, X., Zou, C.-L., Jiang, L., Tang, H.X.: Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113(15), 156401 (2014)
Hisatomi, R., Osada, A., Tabuchi, Y., Ishikawa, T., Noguchi, A., Yamazaki, R., Usami, K., Nakamura, Y.: Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B 93(17), 174427 (2016)
Haigh, J., Nunnenkamp, A., Ramsay, A., Ferguson, A.: Triple-resonant brillouin light scattering in magneto-optical cavities. Phys. Rev. Lett. 117(13), 133602 (2016)
Viola Kusminskiy, S., Tang, H.X., Marquardt, F.: Coupled spin-light dynamics in cavity optomagnonics. Phys. Rev. A 94(3), 033821 (2016)
Li, J., Zhu, S.-Y., Agarwal, G.: Magnon-photon-phonon entanglement in cavity magnomechanics. Phys. Rev. Lett. 121(20), 203601 (2018)
Zhang, X., Zou, C.-L., Jiang, L., Tang, H.X.: Cavity magnomechanics. Sci. Adv. 2(3), 1501286 (2016)
Zhang, G., Wang, Y., You, J.: Theory of the magnon kerr effect in cavity magnonics. Sci. China Phys. Mech. Astron. 62, 1–11 (2019)
Xiong, W., Tian, M., Zhang, G.-Q., You, J.: Strong long-range spin-spin coupling via a kerr magnon interface. Phys. Rev. B 105(24), 245310 (2022)
Ji, F.-Z., An, J.-H.: Kerr nonlinearity induced strong spin-magnon coupling. Phys. Rev. B 108(18), 180409 (2023)
Liu, G., Xiong, W., Ying, Z.-J.: Switchable superradiant phase transition with kerr magnons. Phys. Rev. A 108(3), 033704 (2023)
Zhang, G.-Q., Wang, Y., Xiong, W.: Detection sensitivity enhancement of magnon kerr nonlinearity in cavity magnonics induced by coherent perfect absorption. Phys. Rev. B 107(6), 064417 (2023)
Miao, Q., Agarwal, G.: Kerr nonlinearity induced nonreciprocity in dissipatively coupled resonators. Phys. Rev. Res. 6(3), 033020 (2024)
Flamini, F., Spagnolo, N., Sciarrino, F.: Photonic quantum information processing: a review. Rep. Prog. Phys. 82(1), 016001 (2018)
Maayani, S., Dahan, R., Kligerman, Y., Moses, E., Hassan, A.U., Jing, H., Nori, F., Christodoulides, D.N., Carmon, T.: Flying couplers above spinning resonators generate irreversible refraction. Nature 558(7711), 569–572 (2018)
Yang, J., Zhao, C., Yang, Z., Peng, R., Chao, S., Zhou, L.: Nonreciprocal ground-state cooling of mechanical resonator in a spinning optomechanical system. Front. Phys. 17(5), 52507 (2022)
Wang, X., Huang, K.-W., Xiong, H.: Nonreciprocal sideband responses in a spinning microwave magnomechanical system. Opt. Express 31(4), 5492–5506 (2023)
Jiao, Y.-F., Zhang, S.-D., Zhang, Y.-L., Miranowicz, A., Kuang, L.-M., Jing, H.: Nonreciprocal optomechanical entanglement against backscattering losses. Phys. Rev. Lett. 125(14), 143605 (2020)
Huang, Z.-H., Jiao, Y.-F., Yan, L.-L., Wang, D.-Y., Su, S.-L., Jing, H.: Nonreciprocal enhancement of macroscopic entanglement with noise tolerance. Phys. Rev. A 110(1), 012423 (2024)
Bin, Q., Jing, H., Wu, Y., Nori, F., Lü, X.-Y.: Nonreciprocal bundle emissions of quantum entangled pairs. Phys. Rev. Lett. 133(4), 043601 (2024)
Wang, M., Kong, C., Sun, Z.-Y., Zhang, D., Wu, Y.-Y., Zheng, L.-L.: Nonreciprocal high-order sidebands induced by magnon kerr nonlinearity. Phys. Rev. A 104(3), 033708 (2021)
Zheng, Q., Zhong, W., Cheng, G., Chen, A.: Nonreciprocal macroscopic tripartite entanglement in atom-optomagnomechanical system. EPJ Quantum Technol. 11(1), 1–14 (2024)
Kong, D., Xu, J., Wang, F.: Nonreciprocal entanglement of ferrimagnetic magnons and nitrogen-vacancy-center ensembles by kerr nonlinearity. Phys. Rev. Appl. 21(3), 034061 (2024)
Li, B., Huang, R., Xu, X., Miranowicz, A., Jing, H.: Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res. 7(6), 630–641 (2019)
Genes, C., Vitali, D., Tombesi, P.: Emergence of atom-light-mirror entanglement inside an optical cavity. Phys. Rev. A 77(5), 050307 (2008)
Ren, Y.l.: Nonreciprocal optical-microwave entanglement in a spinning magnetic resonator. Opt. Lett. 47(5), 1125–1128 (2022)
DeJesus, E.X., Kaufman, C.: Routh-hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Phys. Rev. A 35(12), 5288 (1987)
Vitali, D., Gigan, S., Ferreira, A., Böhm, H., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger,f.A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98(3), 030405 (2007)
Parks, P., Hahn, V.: Stability Theory. Prentice Hall, New York (1993)
Plenio, M.B.: Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95(9), 090503 (2005)
Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65(3), 032314 (2002)
Adesso, G., Serafini, A., Illuminati, F.: Extremal entanglement and mixedness in continuous variable systems. Phys. Rev. A 70(2), 022318 (2004)
Simon, R.: Peres-horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84(12), 2726 (2000)
Kogias, I., Lee, A.R., Ragy, S., Adesso, G.: Quantification of gaussian quantum steering. Phys. Rev. Lett. 114(6), 060403 (2015)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grants Nos. 12465002, 12465003 and 12175199), the Natural Science Foundation of Jiangxi Province (Grant No. 20232ACB201013), and the Foundation of Department of Science and Technology of Zhejiang Province (Grant No. 2022R52047).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hu, S., Liu, J., Cheng, G. et al. Nonreciprocal entanglement and asymmetric steering via magnon Kerr effect in cavity optomagnonic system. Quantum Inf Process 24, 39 (2025). https://doi.org/10.1007/s11128-025-04658-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-025-04658-0