Skip to main content

Advertisement

Log in

Dynamic quantum Cournot duopoly with externality cost functions and relative profit maximization

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper establishes a dynamic quantum Cournot game model incorporating an externality cost function, where participants aim to maximize relative profits and possess bounded rationality, updating their output for the next period using a gradient adjustment mechanism. Based on the established model, we analyze the existence and stability of quantum Nash equilibria and investigate the complex behavior of the system. The research results indicate that as the adjustment speed increases, the system’s stability decreases due to the emergence of Flip and Neimark–Sacker bifurcations. However, increasing the degree of quantum entanglement can delay the occurrence of bifurcation behavior. Furthermore, we find that when enterprises cannot control chaotic states by adjusting external cost parameters, they can transition the system from a chaotic to a stable state by altering product differentiation and quantum entanglement. Finally, numerical simulations validate the theoretical analysis and visually demonstrate complex dynamic characteristics, such as bifurcation diagrams, the maximum Lyapunov exponent, strange attractors, sensitivity to initial conditions, and chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82(5), 1052–1055 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83(15), 3077–3080 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272(5–6), 291–303 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Du, J., Ju, C., Li, H.: Quantum entanglement helps in improving economic efficiency. J. Phys. A 38(7), 1559–1565 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Busemeyer, J.R., Bruza, P.D.: Quantum Models of Cognition and Decision. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  6. Piotrowski, E.W., Sladkowski, J.: An invitation to quantum game theory. Int. Theor. Phys. 42(5), 1089–1099 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Guo, H., Zhang, J., Koehler, G.J.: A survey of quantum games. Decis. Support. Syst. 46(1), 318–332 (2008)

    MATH  Google Scholar 

  8. Li, H., Du, J., Massar, S.: Continuous-variable quantum games. Phys. Lett. A 306(2–3), 73–78 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Frąckiewicz, P.: Quantum approach to Cournot-type competition. Int. J. Theor. Phys. 57(2), 353–362 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Alonso-Sanz, R.: Simulation of the quantum Cournot duopoly game. Phys. A 534, 122116 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Khan, S.M., Ramzan, M., Khan, M.K.: Quantum model of Bertrand duopoly. Chin. Phys. Lett. 27(8), 11–14 (2010)

    MATH  Google Scholar 

  12. Sekiguchi, Y., Sakahara, K., Sato, T.: Existence of equilibria in quantum Bertrand–Edgeworth duopoly game. Quantum Inf. Process. 11(6), 1371–1379 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Yu, R., Xiao, R.: Quantum Stackelberg duopoly with isoelastic demand function. J. Comput. Inf. Syst. 8(9), 3643–3650 (2012)

    MATH  Google Scholar 

  14. Grau-Climent, J., Garcia-Perez, L., Alonso-Sanz, R., Losada, C.: Effect of players’ expectations and memory in a quantum Cournot game. Chaos, Solitons Fractals 175, 113950 (2023)

    MathSciNet  MATH  Google Scholar 

  15. Rand, D.: Exotic phenomena in games and duopoly models. J. Math. Econ. 5(2), 173–184 (1978)

    MathSciNet  MATH  Google Scholar 

  16. Agiza, H.N., Elsadany, A.A.: Nonlinear dynamics in the Cournot duopoly game with heterogeneous players. Phys. A 320(8), 512–524 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Agiza, H.N., Elsadany, A.A.: Chaotic dynamics in nonlinear duopoly game with heterogeneous players. Appl. Math. Comput. 149(3), 843–860 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Elsadany, A.A.: A dynamic Cournot duopoly model with different strategies. J. Egypt. Math. Soc. 23(1), 56–61 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Ding, Z., Li, Q., Jiang, S., Wang, X.: Dynamics in a Cournot investment game with heterogeneous players. Appl. Math. Comput. 256, 939–950 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Pecora, N., Sodini, M.: A heterogenous Cournot duopoly with delay dynamics: Hopf bifurcations and stability switching curves. Commun. Nonlinear Sci. Simul. 58, 36–46 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Askar, S.S.: Nonlinear dynamic investigations and global analysis of a Cournot duopoly game with two different objectives. Chaos, Solitons Fractals 155, 111711 (2022)

    MathSciNet  MATH  Google Scholar 

  22. Wang, C., Pi, J., Zhou, D., Tang, W., Yang, G.: Dynamics of n-person Cournot games with asymmetric information and heterogeneous expectations. Phys. A 618, 128691 (2023)

    MathSciNet  MATH  Google Scholar 

  23. Neill, C., Roushan, P., Fang, M., et al.: Ergodic dynamics and thermalization in an isolated quantum system. Nat. Phys. 12(11), 1037–1041 (2016)

    MATH  Google Scholar 

  24. Anand, A., Srivastava, S., Gangopadhyay, S., et al.: Simulating quantum chaos on a quantum computer. Sci. Rep. 14(1), 26890 (2024)

    MATH  Google Scholar 

  25. Kumari, M., Ghose, S.: Untangling entanglement and chaos. Phys. Rev. A 99(4), 042311 (2019)

    ADS  MATH  Google Scholar 

  26. Ghose, S., Stock, R., Jessen, P., et al.: Chaos, entanglement, and decoherence in the quantum kicked top. Phys. Rev. A: At. Mol. Opt. Phys. 78(4), 042318 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Yang, Z., Gong, Q.: Nonlinear dynamics of continuous-variable quantum games with bounded rationality. Quantum Inf. Process. 17(11), 1–15 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Shi, L., Xu, F.: Nonlinear dynamics of a quantum Cournot duopoly game with heterogeneous players. Quantum Inf. Process 18(7), 1–15 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Zhang, X., Sun, D., Jiang, W.: Dynamics of a heterogeneous quantum Cournot duopoly with adjusting players and quadratic costs. Quantum Inf. Process. 19(11), 1–15 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Zhou, D., Yang, H., Pi, J., Yang, G.: The dynamics of a quantum Cournot duopoly with asymmetric information and heterogeneous players. Phys. Lett. A 483, 129033 (2023)

    MathSciNet  MATH  Google Scholar 

  31. Schaffer, M.E.: Are profit-maximisers the best survivors?: A Darwinian model of economic natural selection. J. Econ. Behav. Organ. 12(1), 29–45 (1989)

    MATH  Google Scholar 

  32. Lu, J.: Study of informative advertising competition model in duopolistic market with relative profit object. J. Serv. Sci. Manag. 10(2), 105–111 (2017)

    MATH  Google Scholar 

  33. Elsadany, A.A.: Dynamics of a Cournot duopoly game with bounded rationality based on relative profit maximization. Appl. Math. Comput. 294, 253–263 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Jansen, T., van Lier, A., Van Witteloostuijn, A.: On the impact of managerial bonus systems on firm profit and market competition: the cases of pure profit, sales, market share and relative profits compared. Manag. Decis. Econ. 30(3), 141–153 (2009)

    MATH  Google Scholar 

  35. Lu, Y.: The relative-profit-maximization objective of private firms and endogenous timing in a mixed oligopoly. Singapore Econ. Rev. 56(02), 203–213 (2011)

    MATH  Google Scholar 

  36. Satoh, A., Tanaka, Y.: Relative profit maximization and Bertrand equilibrium with quadratic cost functions. Econ. Bus. Lett. 2(3), 134–139 (2013)

    MATH  Google Scholar 

  37. Satoh, A., Tanaka, Y.: Choice of strategic variables under relative profit maximization in asymmetric oligopoly: non-equivalence of price strategy and quantity strategy. Econ. Bus. Lett. 3(2), 115–126 (2014)

    MATH  Google Scholar 

  38. Peng, Y., Xiao, Y., Lu, Q., Wu, X., Zhao, Y.: Chaotic dynamics in Cournot duopoly model with bounded rationality based on relative profit delegation maximization. Phys. A 560, 125174 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Li, H., Zhou, W., Elsadany, A.A., Chu, T.: Stability, multi-stability and instability in Cournot duopoly game with knowledge spillover effects and relative profit maximization. Chaos, Solitons Fractals 146, 110936 (2021)

    MathSciNet  MATH  Google Scholar 

  40. Askar, S.: On dynamic investigations of Cournot Duopoly Game: when firms want to maximize their relative profits. Symmetry 13(12), 2235 (2021)

    ADS  MATH  Google Scholar 

  41. Askar, S.S., Al-Khedhairi, A.: Dynamic investigations in a duopoly game with price competition based on relative profit and profit maximization. J. Comput. Appl. Math 367, 112464 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Wei, Z., Tan, W., Elsadany, A.A., Moroz, I.: Complexity and chaos control in a Cournot duopoly model based on bounded rationality and relative profit maximization. Nonlinear Dyn. 111(18), 17561–17589 (2023)

    MATH  Google Scholar 

  43. Askar, S., Foul, A., Mahrous, T., Djemele, S., Ibrahim, E.: Global and local analysis for a Cournot duopoly game with two different objective functions. Mathematics 9(23), 3119 (2021)

    MATH  Google Scholar 

  44. Gandolfo, G.: Economic Dynamics: Methods and Models. Elsevier, Amsterdam (1971)

    MATH  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Science Foundation of China (No. 11271098).

Author information

Authors and Affiliations

Authors

Contributions

Dandan Guo contributed to software, writing—original draft, and writing—review and editing. Die Zhou was involved in the conceptualization and writing—review and editing. Chun Wang and Guanghui Yang assisted in writing–review and editing. Hui Yang contributed to the supervision and writing—review and editing.

Corresponding author

Correspondence to Hui Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, D., Zhou, D., Wang, C. et al. Dynamic quantum Cournot duopoly with externality cost functions and relative profit maximization. Quantum Inf Process 24, 43 (2025). https://doi.org/10.1007/s11128-025-04662-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-025-04662-4

Keywords