Skip to main content

Advertisement

Log in

Cyclic codes over a semi-local ring and their applications to QEC and EAQEC codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Let \(R_{q,v}={\mathbb {F}}_q+v{\mathbb {F}}_q+ v^2{\mathbb {F}}_q\) where q is an odd prime power and \(v^3=v\). In this paper, we first provide structures of the Euclidean sums and hulls of cyclic codes of length n over \(R_{q,v}\). Then, we exhibit a method of constructing new quantum error-correcting (abbreviated to QEC) codes via the Euclidean sums of cyclic codes over \(R_{q,v}\) and CSS constructions. Finally, we construct two new classes of entanglement-assisted quantum error-correcting (abbreviated to EAQEC) codes by means of the Euclidean hulls of cyclic codes of length n over \(R_{q,v}\). In addition, to enrich the variety of available QEC and EAQEC codes, many new QEC and EAQEC codes are constructed to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Ali, S., Mohammad, G., Jeelani, N., Sharma, P.: On quantum and LCD codes over the ring \(\mathbb{F} _q + v\mathbb{F} _q + v^2\mathbb{F} _q\). Quantum Inf. Process. 21, 306 (2022)

    ADS  MATH  Google Scholar 

  4. Ashraf, M., Mohammad, G.: Construction of quantum codes from cyclic codes over \({\mathbb{F} }_q + v{\mathbb{F} }_q\). Int. J. Inf. Coding Theory 3(2), 137–144 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Ashraf, M., Mohammad, G.: Quantum codes over \({\mathbb{F} }_p\) from cyclic codes over \({\mathbb{F} }_p[u, v]/\langle u^2-1, v^3-v, uv- vu\rangle \). Cryptogr. Commun. 11, 325–335 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Brun, T., Devetak, I., Hsieh, H.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Bll, S.: Some constructions of quantum MDS codes. Des. Codes Cryptogr. 73(2), 417–424 (2020)

    MATH  Google Scholar 

  8. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over \(\rm GF (4)\). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Chen, X., Zhu, S., Kai, X.: Entanglement-assisted quantum MDS codes constructed from constacyclic codes. Quantum Inf. Process. 17, 273 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Dinh, H.Q., Le, H.T., Nguyen, B.T., Tansuchat, R.: Quantum MDS and synchronizable codes from cyclic and negacyclic codes of length \(4p^s\) over \({\mathbb{F} }_{p^m}\). Quantum Inf. Process. 20, 373 (2021)

    ADS  MATH  Google Scholar 

  11. Dertli, A., Cengellenmis, Y., Eren, S.: On quantum codes obtained from cyclic codes over \(A_2\). Int. J. Quantum Inf. 13(03), 1550031 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Fang, W., Fu, F.: Some new constructions of quantum MDS codes. IEEE Trans. Inf. Theory 65(12), 7840–7847 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Fan, J., Chen, H., Xu, J.: Construction of \(q\)-ary entanglement-assisted quantum MDS codes with minmum distance greater than \(q+1\). Quantum Inf. Comput. 16, 0423–0434 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Fang, W., Fu, F.W., Li, L., Zhu, S.: Euclidean and Hermitian Hulls of MDS codes and their applications to EAQECCs. IEEE Trans. Inf. Theory 60(6), 3527–3537 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Grassl, M., Beth, T., Röttler, M.: On optimal quantum codes. Int. J. Quantum Inf. 2(1), 757–775 (2004)

    MATH  Google Scholar 

  16. Galindo, C., Hernando, F., Matsumoto, R., Ruano, D.: Entanglement-assisted quantum error-correcting codes over arbitrary finite fields. Quantum Inf. Process. 19, 116 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Guenda, K., Gulliver, T.A., Jitman, S., Thipworawimon, S.: Linear \(l\)-intersection pairs of codes and their applications. Des. Codes Cryptogr. 88, 133–152 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Gao, Y., Gao, J., Fu, F.: Quantum codes from cyclic codes over the ring \({\mathbb{F} }_q +v_1{\mathbb{F} }_q +\ldots + v_r{\mathbb{F} }_q\). AAECC 30, 161–174 (2019)

    MATH  Google Scholar 

  19. Gao, J.: Some results on linear codes over \({\mathbb{F} }_p+u{\mathbb{F} }_p+u^2{\mathbb{F} }_p\). J. Appl. Math. Comput. 47(1–2), 473–485 (2014)

    MATH  Google Scholar 

  20. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  21. Hu, P., Liu, X.: Three classes of new EAQEC MDS codes. Quantum Inf. Process. 20, 103 (2021)

  22. Hu, P., Liu, X.: Quantum error-correcting codes from the quantum construction X. Quantum Inf. Process. 22, 366 (2023)

  23. Hu, P., Liu, X.: EAQEC codes from two distinct constacyclic codes. Quantum Inf. Process. 22, 100 (2023)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Islam, H., Prakash, O.: New quantum codes from cyclic codes over \(\mathbb{F}_{p}[u,v,w]/\langle u^2-1,v^2-1, uv-vu,vw-wv,wu-uw\rangle \). J. Appl. Math. Comput. https://doi.org/10.1007/s12190-018-01230-1

  25. Jin, L., Ling, S., Luo, J.: Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes. IEEE Trans. Inf. Theory 56(9), 4735–4740 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Jin, L., Xing, C.: A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 65, 2921–2925 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2), 1193–1197 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Luo, G., Cao, X.: Two new families of entanglement-assisted quantum MDS codes from generalized Reed-Solomon codes. Quantum Inf. Process. 18, 89 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Luo, G., Cao, X., Chen, X.: MDS codes with hulls of arbitrary dimensions and their quantum error correction. IEEE Trans. Inf. Theory 65(5), 2944–2952 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Liu, H., Liu, X.: Constructions of quantum MDS codes. Quantum Inf. Process. 20, 14 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Liu, H., Liu, X.: New EAQEC codes from cyclic codes over \({\mathbb{F} }_q+v{\mathbb{F} }_q\). Quantum Inf. Process. 19, 85 (2020)

    ADS  MATH  Google Scholar 

  33. Liu, X., Yu, L., Hu, P.: New entanglement-assisted quantum codes from \(k\)-Galois dual codes. Finite Fields Appl. 55, 21–32 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Liu, X., Liu, H., Yu, L.: New EAQEC codes constructed from Galois LCD codes. Quantum Inf. Process. 19, 20 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Liu, X., Liu, H.: Quantum codes from linear codes over finite chain rings. Quantum Inf. Process. 16, 240 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Liu, X., Hu, P.: New quantum codes from two linear codes. Quantum Inf. Process. 19, 78 (2020)

  37. Liu, X., Liu, H., Yu, L.: Entanglement-assisted quantum codes from matrix-product codes. Quantum Inf. Process. 18, 183 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Liu, J., Liu, X.: Application of Euclidean sums of matrix-product codes to quantum codes. Quantum Inf. Process. 22, 202 (2023)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Ling, S., Xing, C.P.: Coding Theory\(-\)A First Course. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  40. Prakash, O., Islam, H., Patel, S., Solé, P.: New quantum codes from skew constacyclic codes over a class of non-chain rings \(R_{e, q}\). Int. J. Theor. Phys. 60, 3334–3352 (2021)

    MATH  Google Scholar 

  41. Pereira, F.R.F.: Entanglement-assisted quantum codes from cyclic codes. Entropy 25, 37 (2023). https://doi.org/10.3390/e25010037

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Pandey, O.P., Pathak, S., Shukla, A.K., Mishra, V., Upadhyay, A.K.: A study of QECCs and EAQECCs construction from cyclic codes over the ring \(\mathbb{F} _q + v_1\mathbb{F} _q + v_2\mathbb{F} _q +\cdots + v_s\mathbb{F} _q\). Quantum Inf. Process. 23, 31 (2024)

    ADS  MATH  Google Scholar 

  43. Qian, J.: Quantum codes from cyclic codes over \({\mathbb{F} }_2 + v{\mathbb{F} }_2\). J. Inf. Comput. Sci. 10(6), 1715–1722 (2013)

    MATH  Google Scholar 

  44. Qian, J., Ma, W., Guo, W.: Quantum codes from cyclic codes over finite ring. Int. J. Quantum Inf. 7(06), 1277–1283 (2009)

    MATH  Google Scholar 

  45. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), 2493–2496 (1995)

    ADS  MATH  Google Scholar 

  46. Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064302 (2008)

    ADS  MATH  Google Scholar 

  47. Wang, Y., Kai, X., Sun, Z., Zhu, S.: Quantum codes from Hermitian dual-containing constacyclic codes over \({\mathbb{F} }_{q^2} + v{\mathbb{F} }_{q^2}\). Quantum Inf. Process. 20, 122 (2021)

    ADS  MATH  Google Scholar 

  48. Zhang, X.: Good rate QECCs from the quantum construction X. Quantum Inf. Process. 22, 1 (2023)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Research Funds of Hubei Province, Grant No. Q20174503.

Author information

Authors and Affiliations

Authors

Contributions

Hui Li and Xiusheng Liu discussed and come up with the intial idea. Xiusheng Liu developed the theory. Hui Li edited the text.

Corresponding author

Correspondence to Xiusheng Liu.

Ethics declarations

Conflict of interest

The author declare that she have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Liu, X. Cyclic codes over a semi-local ring and their applications to QEC and EAQEC codes. Quantum Inf Process 24, 49 (2025). https://doi.org/10.1007/s11128-025-04666-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-025-04666-0

Keywords

Mathematics Subject Classification