Abstract
Let \(R_{q,v}={\mathbb {F}}_q+v{\mathbb {F}}_q+ v^2{\mathbb {F}}_q\) where q is an odd prime power and \(v^3=v\). In this paper, we first provide structures of the Euclidean sums and hulls of cyclic codes of length n over \(R_{q,v}\). Then, we exhibit a method of constructing new quantum error-correcting (abbreviated to QEC) codes via the Euclidean sums of cyclic codes over \(R_{q,v}\) and CSS constructions. Finally, we construct two new classes of entanglement-assisted quantum error-correcting (abbreviated to EAQEC) codes by means of the Euclidean hulls of cyclic codes of length n over \(R_{q,v}\). In addition, to enrich the variety of available QEC and EAQEC codes, many new QEC and EAQEC codes are constructed to illustrate our results.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data Availability
Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.
References
Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)
Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)
Ali, S., Mohammad, G., Jeelani, N., Sharma, P.: On quantum and LCD codes over the ring \(\mathbb{F} _q + v\mathbb{F} _q + v^2\mathbb{F} _q\). Quantum Inf. Process. 21, 306 (2022)
Ashraf, M., Mohammad, G.: Construction of quantum codes from cyclic codes over \({\mathbb{F} }_q + v{\mathbb{F} }_q\). Int. J. Inf. Coding Theory 3(2), 137–144 (2015)
Ashraf, M., Mohammad, G.: Quantum codes over \({\mathbb{F} }_p\) from cyclic codes over \({\mathbb{F} }_p[u, v]/\langle u^2-1, v^3-v, uv- vu\rangle \). Cryptogr. Commun. 11, 325–335 (2019)
Brun, T., Devetak, I., Hsieh, H.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006)
Bll, S.: Some constructions of quantum MDS codes. Des. Codes Cryptogr. 73(2), 417–424 (2020)
Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over \(\rm GF (4)\). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)
Chen, X., Zhu, S., Kai, X.: Entanglement-assisted quantum MDS codes constructed from constacyclic codes. Quantum Inf. Process. 17, 273 (2018)
Dinh, H.Q., Le, H.T., Nguyen, B.T., Tansuchat, R.: Quantum MDS and synchronizable codes from cyclic and negacyclic codes of length \(4p^s\) over \({\mathbb{F} }_{p^m}\). Quantum Inf. Process. 20, 373 (2021)
Dertli, A., Cengellenmis, Y., Eren, S.: On quantum codes obtained from cyclic codes over \(A_2\). Int. J. Quantum Inf. 13(03), 1550031 (2015)
Fang, W., Fu, F.: Some new constructions of quantum MDS codes. IEEE Trans. Inf. Theory 65(12), 7840–7847 (2019)
Fan, J., Chen, H., Xu, J.: Construction of \(q\)-ary entanglement-assisted quantum MDS codes with minmum distance greater than \(q+1\). Quantum Inf. Comput. 16, 0423–0434 (2016)
Fang, W., Fu, F.W., Li, L., Zhu, S.: Euclidean and Hermitian Hulls of MDS codes and their applications to EAQECCs. IEEE Trans. Inf. Theory 60(6), 3527–3537 (2020)
Grassl, M., Beth, T., Röttler, M.: On optimal quantum codes. Int. J. Quantum Inf. 2(1), 757–775 (2004)
Galindo, C., Hernando, F., Matsumoto, R., Ruano, D.: Entanglement-assisted quantum error-correcting codes over arbitrary finite fields. Quantum Inf. Process. 19, 116 (2019)
Guenda, K., Gulliver, T.A., Jitman, S., Thipworawimon, S.: Linear \(l\)-intersection pairs of codes and their applications. Des. Codes Cryptogr. 88, 133–152 (2020)
Gao, Y., Gao, J., Fu, F.: Quantum codes from cyclic codes over the ring \({\mathbb{F} }_q +v_1{\mathbb{F} }_q +\ldots + v_r{\mathbb{F} }_q\). AAECC 30, 161–174 (2019)
Gao, J.: Some results on linear codes over \({\mathbb{F} }_p+u{\mathbb{F} }_p+u^2{\mathbb{F} }_p\). J. Appl. Math. Comput. 47(1–2), 473–485 (2014)
Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)
Hu, P., Liu, X.: Three classes of new EAQEC MDS codes. Quantum Inf. Process. 20, 103 (2021)
Hu, P., Liu, X.: Quantum error-correcting codes from the quantum construction X. Quantum Inf. Process. 22, 366 (2023)
Hu, P., Liu, X.: EAQEC codes from two distinct constacyclic codes. Quantum Inf. Process. 22, 100 (2023)
Islam, H., Prakash, O.: New quantum codes from cyclic codes over \(\mathbb{F}_{p}[u,v,w]/\langle u^2-1,v^2-1, uv-vu,vw-wv,wu-uw\rangle \). J. Appl. Math. Comput. https://doi.org/10.1007/s12190-018-01230-1
Jin, L., Ling, S., Luo, J.: Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes. IEEE Trans. Inf. Theory 56(9), 4735–4740 (2010)
Jin, L., Xing, C.: A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 65, 2921–2925 (2014)
Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)
Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2), 1193–1197 (2013)
Luo, G., Cao, X.: Two new families of entanglement-assisted quantum MDS codes from generalized Reed-Solomon codes. Quantum Inf. Process. 18, 89 (2019)
Luo, G., Cao, X., Chen, X.: MDS codes with hulls of arbitrary dimensions and their quantum error correction. IEEE Trans. Inf. Theory 65(5), 2944–2952 (2019)
Liu, H., Liu, X.: Constructions of quantum MDS codes. Quantum Inf. Process. 20, 14 (2021)
Liu, H., Liu, X.: New EAQEC codes from cyclic codes over \({\mathbb{F} }_q+v{\mathbb{F} }_q\). Quantum Inf. Process. 19, 85 (2020)
Liu, X., Yu, L., Hu, P.: New entanglement-assisted quantum codes from \(k\)-Galois dual codes. Finite Fields Appl. 55, 21–32 (2019)
Liu, X., Liu, H., Yu, L.: New EAQEC codes constructed from Galois LCD codes. Quantum Inf. Process. 19, 20 (2020)
Liu, X., Liu, H.: Quantum codes from linear codes over finite chain rings. Quantum Inf. Process. 16, 240 (2017)
Liu, X., Hu, P.: New quantum codes from two linear codes. Quantum Inf. Process. 19, 78 (2020)
Liu, X., Liu, H., Yu, L.: Entanglement-assisted quantum codes from matrix-product codes. Quantum Inf. Process. 18, 183 (2019)
Liu, J., Liu, X.: Application of Euclidean sums of matrix-product codes to quantum codes. Quantum Inf. Process. 22, 202 (2023)
Ling, S., Xing, C.P.: Coding Theory\(-\)A First Course. Cambridge University Press, Cambridge (2004)
Prakash, O., Islam, H., Patel, S., Solé, P.: New quantum codes from skew constacyclic codes over a class of non-chain rings \(R_{e, q}\). Int. J. Theor. Phys. 60, 3334–3352 (2021)
Pereira, F.R.F.: Entanglement-assisted quantum codes from cyclic codes. Entropy 25, 37 (2023). https://doi.org/10.3390/e25010037
Pandey, O.P., Pathak, S., Shukla, A.K., Mishra, V., Upadhyay, A.K.: A study of QECCs and EAQECCs construction from cyclic codes over the ring \(\mathbb{F} _q + v_1\mathbb{F} _q + v_2\mathbb{F} _q +\cdots + v_s\mathbb{F} _q\). Quantum Inf. Process. 23, 31 (2024)
Qian, J.: Quantum codes from cyclic codes over \({\mathbb{F} }_2 + v{\mathbb{F} }_2\). J. Inf. Comput. Sci. 10(6), 1715–1722 (2013)
Qian, J., Ma, W., Guo, W.: Quantum codes from cyclic codes over finite ring. Int. J. Quantum Inf. 7(06), 1277–1283 (2009)
Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), 2493–2496 (1995)
Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064302 (2008)
Wang, Y., Kai, X., Sun, Z., Zhu, S.: Quantum codes from Hermitian dual-containing constacyclic codes over \({\mathbb{F} }_{q^2} + v{\mathbb{F} }_{q^2}\). Quantum Inf. Process. 20, 122 (2021)
Zhang, X.: Good rate QECCs from the quantum construction X. Quantum Inf. Process. 22, 1 (2023)
Acknowledgements
This work was supported by Research Funds of Hubei Province, Grant No. Q20174503.
Author information
Authors and Affiliations
Contributions
Hui Li and Xiusheng Liu discussed and come up with the intial idea. Xiusheng Liu developed the theory. Hui Li edited the text.
Corresponding author
Ethics declarations
Conflict of interest
The author declare that she have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Li, H., Liu, X. Cyclic codes over a semi-local ring and their applications to QEC and EAQEC codes. Quantum Inf Process 24, 49 (2025). https://doi.org/10.1007/s11128-025-04666-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-025-04666-0
Keywords
- Euclidean hulls of cyclic codes
- Euclidean sums of cyclic codes
- Quantum error-correcting codes
- Entanglement-assisted quantum error-correcting codes