Abstract
Secret sharing has become a important cryptographic primitive and been widely used. And quantum secret sharing is a quantum approach to achieve secret sharing. The (t, n) threshold quantum secret sharing requires only t participants out of n to cooperate to recover the secret, which is more flexible than the (n, n) scheme. However, most (t, n) threshold schemes basically involve quantum entanglement, and the preparation of entangled states as well as entanglement swapping are relatively complex. In this paper, we propose a (t, n) threshold quantum secret sharing scheme with authentication by using the Lagrange interpolation polynomial based on single photons. Unlike other (t, n) threshold schemes, it does not involve entangled states or entanglement swapping. And the distributor authenticate the participants without revealing the full identity key. In addition, secret sharing is based on Lagrange interpolation polynomial implementation, allowing any t participants to recover the secret. Analysis shows that the scheme can resist external eavesdroppers and dishonest participants. Compared with other schemes, this scheme has the following advantages: (1) it is easy to implement; (2) the (t, n) threshold scheme increases the flexibility of the scheme; (3) the identity key can be reused.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data Availability
No datasets were generated or analyzed during the current study.
References
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Blakley, G.R.: Safeguarding cryptographic keys. In: managing requirements knowledge, international workshop on, pp. 313–313 (1979)
Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014)
Otterbach, J.S., Manenti, R., Alidoust, N., Bestwick, A., Block, M., Bloom, B., Caldwell, S., Didier, N., Fried, E.S., Hong, S., et al.: Unsupervised machine learning on a hybrid quantum computer. Preprint at arxiv:1712.05771 (2017)
Kerenidis, I., Landman, J.: Quantum spectral clustering. Phys. Rev. A 103(4), 042415 (2021)
Pan, S.-J., Wan, L.-C., Liu, H.-L., Wang, Q.-L., Qin, S.-J., Wen, Q.-Y., Gao, F.: Improved quantum algorithm for a-optimal projection. Phys. Rev. A 102(5), 052402 (2020)
Pan, S.-J., Wan, L.-C., Liu, H.-L., Wu, Y.-S., Qin, S.-J., Wen, Q.-Y., Gao, F.: Quantum algorithm for neighborhood preserving embedding. Chin. Phys. B 31(6), 060304 (2022)
Wan, L.-C., Yu, C.-H., Pan, S.-J., Gao, F., Wen, Q.-Y., Qin, S.-J.: Asymptotic quantum algorithm for the Toeplitz systems. Phys. Rev. A 97(6), 062322 (2018)
Liu, H.-L., Wan, L.-C., Yu, C.-H., Pan, S.-J., Qin, S.-J., Gao, F., Wen, Q.-Y.: A quantum algorithm for solving eigenproblem of the Laplacian matrix of a fully connected weighted graph. Adv. Quantum. Technol. 6(7), 2300031 (2023)
Song, Y.-Q., Wu, Y.-S., Wu, S.-Y., Li, D.-D., Wen, Q.-Y., Qin, S.-J., Gao, F.: A quantum federated learning framework for classical clients. Sci. China Phys., Mech. Astron. 67(5), 250311 (2024)
Song, Y.-Q., Li, J., Wu, Y.-S., Qin, S.-J., Wen, Q.-Y., Gao, F.: A resource-efficient quantum convolutional neural network. Front. Phys. 12, 1362690 (2024)
Qin, L.-Z., Liu, B., Gao, F., Huang, W., Xu, B.-J., Li, Y.: Decoy-state quantum private query protocol with two-way communication. Phys. A 633, 129427 (2024)
Zhang, Y., Yao, Y., Sun, H.-X., Zhang, K.-J., Song, T.-T.: A new hybrid protocol that simultaneously achieves quantum multiparty summation and ranking. Adv. Quantum. Technol. 7(6), 2400078 (2024)
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theoret. Comput. Sci. 560, 7–11 (2014)
Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nat. Photonics 15(8), 570–575 (2021)
Gao, F., Liu, B., Huang, W., Wen, Q.-Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21(3), 98–108 (2014)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100(23), 230502 (2008)
Lin, S., Wen, Q.-Y., Gao, F., Zhu, F.-C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78(6), 064304 (2008)
Qi, Z.-T., Li, Y.-H., Huang, Y.-W., Feng, J., Zheng, Y.-L., Chen, X.-F.: A 15-user quantum secure direct communication network. Light: Sci. Appl. 10(1), 183 (2021)
Zhang, X., Wei, C.-Y., Qin, S.-J., Gao, F., Wen, Q.-Y.: Practical efficient 1-out-of-n quantum oblivious transfer protocol. Quantum Inf. Process. 22(2), 99 (2023)
Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computation. In: Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing, pp. 643–652 (2002)
Mashhadi, S.: General secret sharing based on quantum Fourier transform. Quantum Inf. Process. 18(4), 114 (2019)
Guo, G.-P., Guo, G.-C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247–251 (2003)
Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Revi. A 59(3), 1829 (1999)
Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162 (1999)
Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)
Bai, C.-M., Liu, L., Zhang, S.-J.: Verifiable quantum secret sharing scheme based on orthogonal product states. Chin. Phys. B 33(7), 070302 (2024)
Bai, C.-M., Zhang, S.-J., Liu, L.: Verifiable quantum secret sharing scheme using bell states for a class of special access structures. Int. J. Quantum Inf. (2024). https://doi.org/10.1142/S021974992450045X
Yang, Y.-G., Jia, X., Wang, H.-Y., Zhang, H.: Verifiable quantum (k, n)-threshold secret sharing. Quantum Inf. Process. 11, 1619–1625 (2012)
Lu, C., Miao, F., Hou, J., Meng, K.: Verifiable threshold quantum secret sharing with sequential communication. Quantum Inf. Process. 17, 1–13 (2018)
Yang, C.-W., Tsai, C.-W.: Efficient and secure dynamic quantum secret sharing protocol based on bell states. Quantum Inf. Process. 19, 1–14 (2020)
Liao, C.-H., Yang, C.-W., Hwang, T.: Dynamic quantum secret sharing protocol based on Ghz state. Quantum Inf. Process. 13, 1907–1916 (2014)
You, Z., Wang, Y., Dou, Z., Li, J., Chen, X., Li, L.: Dynamic quantum secret sharing between multiparty and multiparty based on single photons. Phys. A 624, 128893 (2023)
Chen, R.-K., Zhang, Y.-Y., Shi, J.-H., Li, F.-G.: A multiparty error-correcting method for quantum secret sharing. Quantum Inf. Process. 13, 21–31 (2014)
Gupta, S., Sinha, A., Pandey, S.K.: A resilient m-qubit quantum secret sharing scheme using quantum error correction code. Quantum Inf. Process. 23(2), 58 (2024)
Bai, C.-M., Feng, Y., Zhang, S., Liu, L.: Verifiable quantum secret sharing scheme based on LDPC codes. Int. J. Theor. Phys. 63(1), 6 (2024)
Ju, X.-X., Zhong, W., Sheng, Y.-B., Zhou, L.: Measurement-device-independent quantum secret sharing with hyper-encoding. Chin. Phys. B 31(10), 100302 (2022)
Roy, S., Mukhopadhyay, S.: Device-independent quantum secret sharing in arbitrary even dimensions. Phys. Rev. A 100(1), 012319 (2019)
Moreno, M., Brito, S., Nery, R.V., Chaves, R.: Device-independent secret sharing and a stronger form of bell nonlocality. Phys. Rev. A 101(5), 052339 (2020)
Zhang, Q., Zhong, W., Du, M.-M., Shen, S.-T., Li, X.-Y., Zhang, A.-L., Zhou, L., Sheng, Y.-B.: Device-independent quantum secret sharing with noise preprocessing and postselection. Phys. Rev. A 110(4), 042403 (2024)
Bell, B., Markham, D., Herrera-Martí, D., Marin, A., Wadsworth, W., Rarity, J., Tame, M.: Experimental demonstration of graph-state quantum secret sharing. Nat. Commun. 5(1), 1–12 (2014)
Cai, Y., Roslund, J., Ferrini, G., Arzani, F., Xu, X., Fabre, C., Treps, N.: Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 8(1), 15645 (2017)
Zhou, Y., Yu, J., Yan, Z., Jia, X., Zhang, J., Xie, C., Peng, K.: Quantum secret sharing among four players using multipartite bound entanglement of an optical field. Phys. Rev. Lett. 121(15), 150502 (2018)
Bagherinezhad, S., Karimipour, V.: Quantum secret sharing based on reusable greenberger-horne-zeilinger states as secure carriers. Phys. Rev. A 67(4), 044302 (2003)
Gao, F., Guo, F.-Z., Wen, Q.-Y., Zhu, F.-C.: Comment on “quantum secret sharing based on reusable greenberger-horne-zeilinger states as secure carriers’’. Phys. Rev. A 72(3), 036302 (2005)
Du, J.-Z., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: Comment ii on “quantum secret sharing based on reusable greenberger-horne-zeilinger states as secure carriers’’. Phys. Rev. A 74(1), 016301 (2006)
Sun, Y., Du, J.-Z., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C., et al.: Quantum secret sharing with bidirectional authentication. Acta Phys. Sin. 57(8), 4689–4694 (2008)
Abulkasim, H., Hamad, S., Khalifa, A., El Bahnasy, K.: Quantum secret sharing with identity authentication based on bell states. Int. J. Quantum Inf. 15(4), 1750023 (2017)
Li, F.-L., Hu, H., Zhu, S.-X., Yan, J.-Y., Ding, J.: A verifiable (k, n)-threshold dynamic quantum secret sharing scheme. Quantum Inf. Process. 21(7), 259 (2022)
Hsu, L.-Y., Li, C.-M.: Quantum secret sharing using product states. Phys. Rev. A 71(2), 022321 (2005)
Zhang, Z.-J., Li, Y., Man, Z.-X.: Multiparty quantum secret sharing. Phys. Rev. A 71(4), 044301 (2005)
Deng, F.-G., Li, X.-H., Zhou, H.-Y., Zhang, Z.-J.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)
Qin, S.-J., Gao, F., Wen, Q.-Y., Zhu, F.-C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357(2), 101–103 (2006)
Han, L.-F., Liu, Y.-M., Liu, J., Zhang, Z.-J.: Multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281(9), 2690–2694 (2008)
Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Żukowski, M., Weinfurter, H.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95(23), 230505 (2005)
He, G.P.: Comment on “experimental single qubit quantum secret sharing’’. Phys. Rev. Lett. 98(2), 028901 (2007)
Tavakoli, A., Herbauts, I., Żukowski, M., Bourennane, M.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92(3), 030302 (2015)
Karimipour, V., Asoudeh, M.: Quantum secret sharing and random hopping: using single states instead of entanglement. Phys. Rev. A 92(3), 030301 (2015)
Kuo, S.-Y., Tseng, K.-C., Yang, C.-C., Chou, Y.-H.: Efficient multiparty quantum secret sharing based on a novel structure and single qubits. EPJ Quantum Technol. 10(1), 29 (2023)
Long, G.-L., Deng, F.-G., Wang, C., Li, X.-H., Wen, K., Wang, W.-Y.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys China 2, 251–272 (2007)
Zhang, W., Ding, D.-S., Sheng, Y.-B., Zhou, L., Shi, B.-S., Guo, G.-C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)
Hong, Y.-P., Zhou, L., Zhong, W., Sheng, Y.-B.: Measurement-device-independent three-party quantum secure direct communication. Quantum Inf. Process. 22(2), 111 (2023)
Roy, P., Bera, S., Gupta, S., Majumdar, A.S.: Device-independent quantum secure direct communication under non-markovian quantum channels. Quantum Inf. Process. 23(5), 170 (2024)
Gao, G.: Cryptanalysis and improvement of efficient multiparty quantum secret sharing based on a novel structure and single qubits. EPJ Quantum Technol. 11(1), 1–8 (2024)
Lagrange, J.L.: Leçons élémentaires sur les mathématiques données à l’école normale. In: Serret, J.-A. (ed.) Œuvres de Lagrange, pp. 183–287. Gauthier-Villars, Paris, France (1877)
Acknowledgements
This work is supported by National Natural Science Foundation of China (Grant Nos. 62272056, 62372048, 62371069)
Author information
Authors and Affiliations
Contributions
All authors contributed equally to this work.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no Conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, J., Zhang, J., Qin, S. et al. A (t, n) threshold quantum secret sharing with authentication based on single photons. Quantum Inf Process 24, 61 (2025). https://doi.org/10.1007/s11128-025-04672-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-025-04672-2