Skip to main content

Advertisement

Log in

A (tn) threshold quantum secret sharing with authentication based on single photons

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Secret sharing has become a important cryptographic primitive and been widely used. And quantum secret sharing is a quantum approach to achieve secret sharing. The (tn) threshold quantum secret sharing requires only t participants out of n to cooperate to recover the secret, which is more flexible than the (nn) scheme. However, most (tn) threshold schemes basically involve quantum entanglement, and the preparation of entangled states as well as entanglement swapping are relatively complex. In this paper, we propose a (tn) threshold quantum secret sharing scheme with authentication by using the Lagrange interpolation polynomial based on single photons. Unlike other (tn) threshold schemes, it does not involve entangled states or entanglement swapping. And the distributor authenticate the participants without revealing the full identity key. In addition, secret sharing is based on Lagrange interpolation polynomial implementation, allowing any t participants to recover the secret. Analysis shows that the scheme can resist external eavesdroppers and dishonest participants. Compared with other schemes, this scheme has the following advantages: (1) it is easy to implement; (2) the (tn) threshold scheme increases the flexibility of the scheme; (3) the identity key can be reused.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    MathSciNet  MATH  Google Scholar 

  2. Blakley, G.R.: Safeguarding cryptographic keys. In: managing requirements knowledge, international workshop on, pp. 313–313 (1979)

  3. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014)

    MATH  Google Scholar 

  4. Otterbach, J.S., Manenti, R., Alidoust, N., Bestwick, A., Block, M., Bloom, B., Caldwell, S., Didier, N., Fried, E.S., Hong, S., et al.: Unsupervised machine learning on a hybrid quantum computer. Preprint at arxiv:1712.05771 (2017)

  5. Kerenidis, I., Landman, J.: Quantum spectral clustering. Phys. Rev. A 103(4), 042415 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Pan, S.-J., Wan, L.-C., Liu, H.-L., Wang, Q.-L., Qin, S.-J., Wen, Q.-Y., Gao, F.: Improved quantum algorithm for a-optimal projection. Phys. Rev. A 102(5), 052402 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Pan, S.-J., Wan, L.-C., Liu, H.-L., Wu, Y.-S., Qin, S.-J., Wen, Q.-Y., Gao, F.: Quantum algorithm for neighborhood preserving embedding. Chin. Phys. B 31(6), 060304 (2022)

    ADS  MATH  Google Scholar 

  8. Wan, L.-C., Yu, C.-H., Pan, S.-J., Gao, F., Wen, Q.-Y., Qin, S.-J.: Asymptotic quantum algorithm for the Toeplitz systems. Phys. Rev. A 97(6), 062322 (2018)

    ADS  MATH  Google Scholar 

  9. Liu, H.-L., Wan, L.-C., Yu, C.-H., Pan, S.-J., Qin, S.-J., Gao, F., Wen, Q.-Y.: A quantum algorithm for solving eigenproblem of the Laplacian matrix of a fully connected weighted graph. Adv. Quantum. Technol. 6(7), 2300031 (2023)

    MATH  Google Scholar 

  10. Song, Y.-Q., Wu, Y.-S., Wu, S.-Y., Li, D.-D., Wen, Q.-Y., Qin, S.-J., Gao, F.: A quantum federated learning framework for classical clients. Sci. China Phys., Mech. Astron. 67(5), 250311 (2024)

    ADS  MATH  Google Scholar 

  11. Song, Y.-Q., Li, J., Wu, Y.-S., Qin, S.-J., Wen, Q.-Y., Gao, F.: A resource-efficient quantum convolutional neural network. Front. Phys. 12, 1362690 (2024)

    MATH  Google Scholar 

  12. Qin, L.-Z., Liu, B., Gao, F., Huang, W., Xu, B.-J., Li, Y.: Decoy-state quantum private query protocol with two-way communication. Phys. A 633, 129427 (2024)

    MathSciNet  MATH  Google Scholar 

  13. Zhang, Y., Yao, Y., Sun, H.-X., Zhang, K.-J., Song, T.-T.: A new hybrid protocol that simultaneously achieves quantum multiparty summation and ranking. Adv. Quantum. Technol. 7(6), 2400078 (2024)

    MATH  Google Scholar 

  14. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theoret. Comput. Sci. 560, 7–11 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nat. Photonics 15(8), 570–575 (2021)

    ADS  MATH  Google Scholar 

  16. Gao, F., Liu, B., Huang, W., Wen, Q.-Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21(3), 98–108 (2014)

    ADS  MATH  Google Scholar 

  17. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100(23), 230502 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Lin, S., Wen, Q.-Y., Gao, F., Zhu, F.-C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78(6), 064304 (2008)

    ADS  MATH  Google Scholar 

  19. Qi, Z.-T., Li, Y.-H., Huang, Y.-W., Feng, J., Zheng, Y.-L., Chen, X.-F.: A 15-user quantum secure direct communication network. Light: Sci. Appl. 10(1), 183 (2021)

    ADS  MATH  Google Scholar 

  20. Zhang, X., Wei, C.-Y., Qin, S.-J., Gao, F., Wen, Q.-Y.: Practical efficient 1-out-of-n quantum oblivious transfer protocol. Quantum Inf. Process. 22(2), 99 (2023)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computation. In: Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing, pp. 643–652 (2002)

  22. Mashhadi, S.: General secret sharing based on quantum Fourier transform. Quantum Inf. Process. 18(4), 114 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Guo, G.-P., Guo, G.-C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247–251 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Revi. A 59(3), 1829 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162 (1999)

    ADS  MATH  Google Scholar 

  26. Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)

    ADS  MATH  Google Scholar 

  27. Bai, C.-M., Liu, L., Zhang, S.-J.: Verifiable quantum secret sharing scheme based on orthogonal product states. Chin. Phys. B 33(7), 070302 (2024)

    MATH  Google Scholar 

  28. Bai, C.-M., Zhang, S.-J., Liu, L.: Verifiable quantum secret sharing scheme using bell states for a class of special access structures. Int. J. Quantum Inf. (2024). https://doi.org/10.1142/S021974992450045X

    Article  MATH  Google Scholar 

  29. Yang, Y.-G., Jia, X., Wang, H.-Y., Zhang, H.: Verifiable quantum (k, n)-threshold secret sharing. Quantum Inf. Process. 11, 1619–1625 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Lu, C., Miao, F., Hou, J., Meng, K.: Verifiable threshold quantum secret sharing with sequential communication. Quantum Inf. Process. 17, 1–13 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Yang, C.-W., Tsai, C.-W.: Efficient and secure dynamic quantum secret sharing protocol based on bell states. Quantum Inf. Process. 19, 1–14 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Liao, C.-H., Yang, C.-W., Hwang, T.: Dynamic quantum secret sharing protocol based on Ghz state. Quantum Inf. Process. 13, 1907–1916 (2014)

    ADS  MATH  Google Scholar 

  33. You, Z., Wang, Y., Dou, Z., Li, J., Chen, X., Li, L.: Dynamic quantum secret sharing between multiparty and multiparty based on single photons. Phys. A 624, 128893 (2023)

    MathSciNet  MATH  Google Scholar 

  34. Chen, R.-K., Zhang, Y.-Y., Shi, J.-H., Li, F.-G.: A multiparty error-correcting method for quantum secret sharing. Quantum Inf. Process. 13, 21–31 (2014)

    ADS  MATH  Google Scholar 

  35. Gupta, S., Sinha, A., Pandey, S.K.: A resilient m-qubit quantum secret sharing scheme using quantum error correction code. Quantum Inf. Process. 23(2), 58 (2024)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Bai, C.-M., Feng, Y., Zhang, S., Liu, L.: Verifiable quantum secret sharing scheme based on LDPC codes. Int. J. Theor. Phys. 63(1), 6 (2024)

    MathSciNet  MATH  Google Scholar 

  37. Ju, X.-X., Zhong, W., Sheng, Y.-B., Zhou, L.: Measurement-device-independent quantum secret sharing with hyper-encoding. Chin. Phys. B 31(10), 100302 (2022)

    ADS  MATH  Google Scholar 

  38. Roy, S., Mukhopadhyay, S.: Device-independent quantum secret sharing in arbitrary even dimensions. Phys. Rev. A 100(1), 012319 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Moreno, M., Brito, S., Nery, R.V., Chaves, R.: Device-independent secret sharing and a stronger form of bell nonlocality. Phys. Rev. A 101(5), 052339 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Zhang, Q., Zhong, W., Du, M.-M., Shen, S.-T., Li, X.-Y., Zhang, A.-L., Zhou, L., Sheng, Y.-B.: Device-independent quantum secret sharing with noise preprocessing and postselection. Phys. Rev. A 110(4), 042403 (2024)

    MathSciNet  MATH  Google Scholar 

  41. Bell, B., Markham, D., Herrera-Martí, D., Marin, A., Wadsworth, W., Rarity, J., Tame, M.: Experimental demonstration of graph-state quantum secret sharing. Nat. Commun. 5(1), 1–12 (2014)

    MATH  Google Scholar 

  42. Cai, Y., Roslund, J., Ferrini, G., Arzani, F., Xu, X., Fabre, C., Treps, N.: Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 8(1), 15645 (2017)

    ADS  Google Scholar 

  43. Zhou, Y., Yu, J., Yan, Z., Jia, X., Zhang, J., Xie, C., Peng, K.: Quantum secret sharing among four players using multipartite bound entanglement of an optical field. Phys. Rev. Lett. 121(15), 150502 (2018)

    ADS  Google Scholar 

  44. Bagherinezhad, S., Karimipour, V.: Quantum secret sharing based on reusable greenberger-horne-zeilinger states as secure carriers. Phys. Rev. A 67(4), 044302 (2003)

    ADS  MATH  Google Scholar 

  45. Gao, F., Guo, F.-Z., Wen, Q.-Y., Zhu, F.-C.: Comment on “quantum secret sharing based on reusable greenberger-horne-zeilinger states as secure carriers’’. Phys. Rev. A 72(3), 036302 (2005)

    ADS  Google Scholar 

  46. Du, J.-Z., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: Comment ii on “quantum secret sharing based on reusable greenberger-horne-zeilinger states as secure carriers’’. Phys. Rev. A 74(1), 016301 (2006)

    ADS  MATH  Google Scholar 

  47. Sun, Y., Du, J.-Z., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C., et al.: Quantum secret sharing with bidirectional authentication. Acta Phys. Sin. 57(8), 4689–4694 (2008)

    MathSciNet  MATH  Google Scholar 

  48. Abulkasim, H., Hamad, S., Khalifa, A., El Bahnasy, K.: Quantum secret sharing with identity authentication based on bell states. Int. J. Quantum Inf. 15(4), 1750023 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Li, F.-L., Hu, H., Zhu, S.-X., Yan, J.-Y., Ding, J.: A verifiable (k, n)-threshold dynamic quantum secret sharing scheme. Quantum Inf. Process. 21(7), 259 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Hsu, L.-Y., Li, C.-M.: Quantum secret sharing using product states. Phys. Rev. A 71(2), 022321 (2005)

    ADS  MATH  Google Scholar 

  51. Zhang, Z.-J., Li, Y., Man, Z.-X.: Multiparty quantum secret sharing. Phys. Rev. A 71(4), 044301 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Deng, F.-G., Li, X.-H., Zhou, H.-Y., Zhang, Z.-J.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    ADS  MATH  Google Scholar 

  53. Qin, S.-J., Gao, F., Wen, Q.-Y., Zhu, F.-C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357(2), 101–103 (2006)

    ADS  MATH  Google Scholar 

  54. Han, L.-F., Liu, Y.-M., Liu, J., Zhang, Z.-J.: Multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281(9), 2690–2694 (2008)

    ADS  MATH  Google Scholar 

  55. Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Żukowski, M., Weinfurter, H.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95(23), 230505 (2005)

    ADS  MATH  Google Scholar 

  56. He, G.P.: Comment on “experimental single qubit quantum secret sharing’’. Phys. Rev. Lett. 98(2), 028901 (2007)

    ADS  MATH  Google Scholar 

  57. Tavakoli, A., Herbauts, I., Żukowski, M., Bourennane, M.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92(3), 030302 (2015)

    ADS  Google Scholar 

  58. Karimipour, V., Asoudeh, M.: Quantum secret sharing and random hopping: using single states instead of entanglement. Phys. Rev. A 92(3), 030301 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  59. Kuo, S.-Y., Tseng, K.-C., Yang, C.-C., Chou, Y.-H.: Efficient multiparty quantum secret sharing based on a novel structure and single qubits. EPJ Quantum Technol. 10(1), 29 (2023)

    MATH  Google Scholar 

  60. Long, G.-L., Deng, F.-G., Wang, C., Li, X.-H., Wen, K., Wang, W.-Y.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys China 2, 251–272 (2007)

    ADS  MATH  Google Scholar 

  61. Zhang, W., Ding, D.-S., Sheng, Y.-B., Zhou, L., Shi, B.-S., Guo, G.-C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)

    ADS  MATH  Google Scholar 

  62. Hong, Y.-P., Zhou, L., Zhong, W., Sheng, Y.-B.: Measurement-device-independent three-party quantum secure direct communication. Quantum Inf. Process. 22(2), 111 (2023)

    ADS  MathSciNet  MATH  Google Scholar 

  63. Roy, P., Bera, S., Gupta, S., Majumdar, A.S.: Device-independent quantum secure direct communication under non-markovian quantum channels. Quantum Inf. Process. 23(5), 170 (2024)

    ADS  MathSciNet  MATH  Google Scholar 

  64. Gao, G.: Cryptanalysis and improvement of efficient multiparty quantum secret sharing based on a novel structure and single qubits. EPJ Quantum Technol. 11(1), 1–8 (2024)

    MathSciNet  MATH  Google Scholar 

  65. Lagrange, J.L.: Leçons élémentaires sur les mathématiques données à l’école normale. In: Serret, J.-A. (ed.) Œuvres de Lagrange, pp. 183–287. Gauthier-Villars, Paris, France (1877)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant Nos. 62272056, 62372048, 62371069)

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding authors

Correspondence to Jie Zhang or Sujuan Qin.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, J., Qin, S. et al. A (tn) threshold quantum secret sharing with authentication based on single photons. Quantum Inf Process 24, 61 (2025). https://doi.org/10.1007/s11128-025-04672-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-025-04672-2

Keywords