Abstract
Cooling the motion of multiple isolated, levitated particles has the potential to explore the limits of quantum mechanics in a new mass regime. This technique not only serves as a foundation for examining macroscopic quantum states and building high-precision sensors, but also crucial for overcoming detrimental cross-coupling and decoherence effects in multimode systems. In this paper, we studied that the center-of-mass modes of multi-magnons can be simultaneously cooled to their quantum ground states. Our scheme is realized by adjusting the coupling position of the particle to compensate for the reduction in coupling strength due to magnonic excitations. Additionally, we find that the cooling rate of a magnon is influenced by its own coupling strength and the effective detuning. The numerical simulation results indicate that the lowest phonon occupancy can be cooled to less than 1 simultaneously.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
The data that have been used are confidential.
References
Zhang, X., Zou, C.L., Jiang, L., Tang, H.: Cavity magnon-mechanics. Sci. Adv. 2, 1501286 (2016)
Liao, Q.H., Deng, S.C., Song, M.L., et al.: Tunable magnomechanically induced transparency and slow\(-\)fast light propagation in a hybrid cavity magnomechanical system. Quantum Inf. Process. 23, 242 (2024)
Wang, J.: Entanglement in a cavity magnomechanical system. Quantum Inf. Process. 21, 105 (2022)
Sohail, A., Hassan, A., Ahmed, R., et al.: Generation of enhanced entanglement of directly and indirectly coupled modes in a two-cavity magnomechanical system. Quantum Inf. Process. 21, 207 (2022)
Du, H.J., Ma, X.Y., Guo, J.L.: Enhancement of magnon\(-\)magnon entanglement in cavity magnomechanics with an optical parametric amplifier. Quantum Inf. Process. 23, 198 (2024)
Collet, M., et al.: Generation of coherent spin-wave modes in Yttrium Iron Garnet microdiscs by spin-orbit torque. Nat. Commun. 7, 10377 (2016)
Ho, M., Oudot, E., Bancal, J.D., Sangouard, N.: Witnessing optomechanical entanglement with photon counting. Phys. Rev. Lett. 121, 023602 (2018)
Riedinger, R., et al.: Remote quantum entanglement between two micromechanical oscillators. Nature 556, 473 (2018)
Yuan, H.Y., Yung, M.H.: Thermodynamic entanglement of magnonic condensates. Phys. Rev. B 97, 060405 (2018)
Morimae, T., Sugita, A., Shimizu, A.: Macroscopic entanglement of many-magnon states. Phys. Rev. A 71, 032317 (2005)
Sohail, A., Qasymeh, A., et al.: Entanglement and quantum steering in a hybrid quadpartite system. Phys. Rev. Appl. 20, 054062 (2023)
Moslehi, M., Baghshahi, H.R., Faghihi, M.J., Mirafzali, S.Y.: Entanglement between photonic and magnonic modes in an open optomagnonical system. Opt. Laser Technol. 168, 109920 (2024)
Kittel, C.: On the theory of ferromagnetic resonance absorption. Phys. Rev. 73, 155 (1948)
Chang, Y.Y., Cheng, J.Q., Shao, H.: Magnon, doublon and quarton excitations in \(2D\)\(S=1/2\) trimerized Heisenberg models. Front. Phys. 19, 63202 (2024)
Wang, K., Gao, Y.P., Jiao, R.Z.: Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics. Front. Phys. 17, 42201 (2022)
Zhang, X., Wang, Y.P., Xiong, H.Y., et al.: Magnon dark modes and gradient memory. Nat. Commun. 6, 8914 (2015)
Kong, C., Xiong, H., Wu, Y.: Magnon-induced nonreciprocity based on the magnon Kerr effect. Phys. Rev. Appl. 12, 034001 (2019)
Zhang, D., Luo, X.Q., Wang, Y.P., et al.: Observation of the exceptional point in cavity-magnon-polaritons. Nat. Commun. 8, 1368 (2017)
Liu, Z.X., Wang, B., Xiong, H., Wu, Y.: Magnon-induced high-order sideband generation. Opt. Lett. 43, 3698 (2018)
Wang, B., Kong, C., Liu, Z.X., Xiong, H., Wu, Y.: Magnetic-field-controlled magnon chaos in an active cavity-magnon system. Phys. Rev. Lett. 16, 045208 (2019)
Soykal, O.O., Flatte, M.E.: Strong field interactions between a nanomagnet and a photonic cavity. Phys. Rev. Lett. 104, 077202 (2010)
Liu, Z.X., Xiong, H., Wu, Y.: Magnon blockade in a hybrid ferromagnet-superconductor quantum system. Phys. Rev. B 100, 134421 (2019)
Wang, Z.Y., He, X.W., Nu, X.H.: Nonreciprocal PT-symmetric magnon laser in spinning cavity optomagnonics. Opt. Express 32, 4987 (2024)
Zhang, X., Zou, C.L., Jiang, L., Tang, H.X.: Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113, 156401 (2014)
Wang, Y.P., Zhang, G.Q., Zhang, D., Li, T.F., Hu, C.M., You, J.Q.: Bistability of cavity magnon polaritons. Phys. Rev. Lett. 120, 057202 (2018)
Shen, R.C., Wang, Y.P., Li, J., Zhu, S.Y., Agarwal, G.S., You, J.Q.: Long-time memory and ternary logic gate using a multistable cavity magnonic system. Phys. Rev. Lett. 127, 183202 (2021)
Li, D.S., Kang, Y.H., Cheng, Y.H., Liu, Y.: One-step parity measurement of N cat-state qubits via reverse engineering and optimal control. Phys. Rev. A 109, 022437 (2024)
Li, J., Zhu, S.Y.: Entangling two magnon modes via magnetostrictive interaction. New J. Phys. 21, 085001 (2019)
Tan, H.: Genuine photon-magnon-phonon Einstein-Podolsky-Rosen steerable nonlocality in a continuously-monitored cavity magnomechanical system. Phys. Rev. Res. 1, 033161 (2019)
Zhang, W., Wang, D.Y., Bai, C.H., et al.: Generation and transfer of squeezed states in a cavity magnomechanical system by two-tone microwave fields. Opt. Express 29, 11773 (2021)
Chen, Y.T., Du, L., Zhang, Y., et al.: Perfect transfer of enhanced entanglement and asymmetric steering in a cavity-magnomechanical system. Phys. Rev. A 103, 053712 (2021)
Yu, M., Shen, H., Li, J.: Magnetostrictively induced stationary entanglement between two microwave fields. Phys. Rev. Lett. 124, 213604 (2020)
Wallraff, A., Schuster, D.I., Blais, A., et al.: Strong coupling of a single photon to a superconducting qubit. Nature 431, 162 (2004)
Roy, C., Hughes, S.: Phonon-dressed Mollow triplet in the regime of cavity-QED. Phys. Rev. Lett. 106, 247403 (2011)
Wang, B., Liu, Z.X., Kong, C., Xiong, H., Wu, Y.: Magnon-induced transparency and amplification in PT-symmetric cavity-magnon system. Opt. Express 26, 20248 (2018)
Xu, H.P., Wang, Y., Gao, J.M., et al.: Kerr nonlinearity assisted magnetically induced transparency in cavity magnon polaritons. Opt. Lett. 49, 367 (2024)
Marquardt, F., Chen, J.P., Clerk, A., et al.: Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)
Ludwig, M., Marquardt, F.: Quantum many-body dynamics in optomechanical arrays. Phys. Rev. Lett. 111, 073603 (2013)
Shen, Z., Zhang, Y.L., Chen, Y., et al.: Experimental realization of optomechanically induced non-reciprocity. Nat. Photon. 10, 657 (2016)
Li, J.M., Fei, S.M.: Quantum entanglement generation on magnons assisted with microwave cavities coupled to a superconducting qubit. Front. Phys. 18, 41301 (2023)
Li, J., Zhu, S.Y., Agarwal, G.S.: Magnon-photon-phonon entanglement in cavity magnomechanics. Phys. Rev. Lett. 121, 203601 (2018)
Yuan, H.Y., Zheng, S.S., He, Q.Y.: Enhancement of magnon-magnon entanglement inside a cavity. Phys. Rev. B 101, 014419 (2023)
Zheng, L.L., Shi, W.X., Shen, K.: Controlling magnon-magnon entanglement and steering by atomic coherence. Opt. Express 31, 32953 (2023)
Zhang, Z., Scully, M.O., Agarwal, G.S.: Deterministic quantum entanglement between macroscopic ferrite samples. Phys. Rev. Res. 1, 023021 (2019)
Kong, C., Liu, J.B., Xiong, H.: Nonreciprocal microwave transmission under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect. Front. Phys. 18, 12501 (2023)
Nair, J.M.P., Agarwal, G.S.: Quantum entanglement between two magnon modes via Kerr nonlinearity driven far from equilibrium. Appl. Phys. Lett. 117, 084001 (2020)
Inman, J., Xiong, Y., Bidthanapally, R.: Hybrid Magnonics for Short-Wavelength Spin Waves Facilitated by a Magnetic Heterostructure. Phys. Rev. Appl. 17, 044034 (2022)
Genes, C., Vitali, D., Tombesi, P.: Ground-state cooling of a micromechanical oscillator: generalized framework for cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2007)
Roszak, K., Horodecki, P., Horodecki, R.: Sudden death of effective entanglement. Phys. Rev. A 81, 042308 (2009)
Huang, J., Lai, D.G., Huang, C., Liu, J.F., Huang, F., Liao, J.Q.: Multimode optomechanical cooling via general dark-mode control. Phys. Rev. A 106, 013526 (2022)
Lai, D.G., Qin, W., Hou, B.P.: Significant enhancement in refrigeration and entanglement in auxiliary-cavity-assisted optomechanical systems arXiv:2110.02663 (2021)
Machnes, S., Cerrillo, J., Aspelmeyer, M.: Pulsed laser cooling for cavity-optomechanical resonators. Phys. Rev. Lett. 108, 153601 (2012)
Qiu, W., Cheng, X., Chen, A.: Controlling quantum coherence and entanglement in cavity magnomechanical systems. Phys. Rev. A 105, 063718 (2022)
Schleier-Smith, M.H., Leroux, I.D., Zhang, H.: Optomechanical cavity cooling of an atomic ensemble. Phys. Rev. Lett. 107, 143005 (2011)
Potts, C.A., Varga, E., Bittencourt, V.A.: Dynamical backaction magnomechanics. Phys. Rev. X 11, 031053 (2021)
Ockeloen-Korppi, C.F., Gely, M.F., Damskagg, E., Jenkins, E.: Sideband cooling of nearly degenerate micromechanical oscillators in a multimode optomechanical system. Phys. Rev. A 99, 023826 (2019)
Huai, S.N., Liu, Y.L., Zhang, J.: Symmetric-like cavity magnomechanical system. Phys. Rev. A 99, 043803 (2019)
Liao, C.G., Chen, R.X., Xie, H.: Reservoir-engineered entanglement in a hybrid modulated three-mode optomechanical system. Phys. Rev. A 97, 042314 (2018)
Ying, Y.L., Wang, D.: Quantum theory of transmission line resonator-assisted cooling of a micromechanical resonator. Phys. Rev. B 78, 134301 (2008)
Wang, Y.P., Zhang, G.Q., Zhang, D.: Bistability of cavity magnon polaritons. Phys. Rev. Lett. 120, 057202 (2018)
Xie, H., He, L.W., Shang, X.: Nonreciprocal photon blockade in cavity optomagnonics. Phys. Rev. A 104, 063713 (2022)
Wang, M., Kong, C., Sun, Z.Y., Zhang, D., Zheng, L.: Nonreciprocal high-order sidebands induced by magnon Kerr nonlinearity. Phys. Rev. A 104, 033708 (2021)
Asjad, M., Li, J., Zhu, S.Y., You, J.Q.: Magnon squeezing enhanced ground-state cooling in cavity magnomechanics. Fun. Res. 3, 3202337 (2023)
Ganthya, D., Parai, A., Jana, P.C.: Simultaneous ground state cooling of two mechanical resonators weakly coupled with three optical cavities in the unresolved sideband regime. Opt. Laser Technol. 177, 111169 (2024)
Li, J., Zhu, S.Y., Agarwal, G.S.: Squeezed states of magnons and phonons in cavity magnomechanics. Phys. Rev. A 99, 021801 (2019)
Ding, M.S., Zheng, L., Li, C.: Ground-state cooling of a magnomechanical resonator induced by magnetic damping. J. Opt. Soc. Am. B 37, 627 (2020)
Li, J., Wang, Y.P., You, J.Q., et al.: Squeezing microwaves by magnetostriction. Nat. Sci. Rev. 10, 247 (2023)
Liu, J., Liu, Y.P., Tan, L., et al.: Simultaneously enhanced magnomechanical cooling and entanglement assisted by an auxiliary microwave cavity. Opt. Express 32, 722 (2024)
Yang, J.Z., Wang, L., Liu, Y.M.: Ground state cooling of a magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature. Front. Phys. 15, 52504 (2020)
Seberson, T., Ju, P., Ahn, J., Bang, J., Li, T., Robicheaux, F.: Simulation of sympathetic cooling of an optically levitated magnetic nanoparticle via coupling to a cold atomic gas. J. Opt. Soc. Am. B 37, 3714 (2020)
Rusconi, C.C., Pchhacker, V., Kustura, K., Cirac, J.I., Romero-Isart, O.: Quantum spin stabilized magnetic levitation. Phys. Rev. Lett. 119, 167202 (2017)
Gieseler, J., Kabcenell, A., Rosenfeld, E., et al.: Single-spin magnetomechanics with levitated micromagnets. Phys. Rev. Lett. 124, 163604 (2020)
Huillery, P., Delord, T., Nicolas, L., Bossche, M.V., Perdriat, M., Htelet, G.: Spin mechanics with levitating ferromagnetic particles. Phys. Rev. B 101, 134415 (2020)
Delic, U., Reisenbauer, M., Dare, K., Grass, D., Vuletic, V., Kiesel, N., Aspelmeyer, M.: Cooling of a levitated nanoparticle to the motional quantum ground state. Science 367, 892 (2020)
Kani, A., Sarma, B., Twamley, J.: Accelerated motional cooling with deep reinforcement learning. Phys. Rev. Res. 4, L042038 (2022)
Sarma, B., Borah, S., Kani, A., Twamley, J.: Intensive cavity-magnomechanical cooling of a levitated macromagnet. Phys. Rev. Lett. 128, 013602 (2022)
Li, T., Kheifets, S., Medellin, D., Raizen, M.G.: Measurement of the instantaneous velocity of a Brownian particle. Science 328, 1673 (2010)
Hu, J.T., Luqiao, L.: Strong coupling between microwave photons and nanomagnet magnons. Phys. Rev. Lett. 123, 107702 (2019)
Zhang, X.F., Zou, C.L., Jiang, L.: Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113, 156401 (2014)
Tabuchi, Y., Ishikawa, Y.: Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113, 083603 (2014)
Huang, J., Lai, D.G., Jin, F., et al.: Multimode optomechanical cooling via general dark-mode control. Phys. Rev. A 106, 013526 (2022)
Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)
Liu, J.Y., Liu, W., Xu, D., et al.: Ground-state cooling of multiple near-degenerate mechanical modes. Phys. Rev. A 105, 053518 (2022)
Genes, M., Vitali, D., Tombesi, P., Gigan, S., et al.: Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008)
Xin, Y.Z., Liang, W., Mu, L.Y., et al.: Ground-state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature. Front. Phys. 15, 52504 (2020)
Kuhr, S., Gleyzes, S., Guerlin, C., et al.: Ultrahigh finesse Fabry-Perot superconducting resonator. Appl. Phys. Lett. 90, 164101 (2007)
Romanenko, A., Pilipenko, R., Grassellino, A., et al.: Three-dimensional superconducting resonators at \( T < 20 \, \text{ mK } \) with photon lifetimes up to \( t = 2 \, \text{ s } \). Phys. Rev. Appl. 13, 034032 (2020)
Gieseler, J., Novotny, L., Quidant, R.: Thermal nonlinearities in a nanomechanical oscillator. Nat. Phys. 9, 806 (2013)
Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grant No. 12074070 and the Natural Science Foundation of Fujian Province under Grant No.2020J01471.
Author information
Authors and Affiliations
Contributions
C.L.: Proposed the research question, designed the theoretical framework, completed the derivations, conducted numerical simulations, analyzed the results, and wrote the article. L.Y: Completed the revisions of the paper and assisted in theoretical discussions. B.L.: Revised the draft. Y.S.Y: Revised the draft. L.R.X: Completed the revisions of the paper and ensured the scientific integrity of the research. Z.Z.R: Provided overall guidance, reviewed the content, and ensured the scientific integrity of the research. All authors reviewed the final manuscript and agreed to its submission.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chen, L., Liu, Y., Bin, L. et al. Simultaneous cooling of two levitated macromagnets in cavity magnomechanical system. Quantum Inf Process 24, 76 (2025). https://doi.org/10.1007/s11128-025-04690-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-025-04690-0