Skip to main content

Advertisement

Log in

Simultaneous cooling of two levitated macromagnets in cavity magnomechanical system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Cooling the motion of multiple isolated, levitated particles has the potential to explore the limits of quantum mechanics in a new mass regime. This technique not only serves as a foundation for examining macroscopic quantum states and building high-precision sensors, but also crucial for overcoming detrimental cross-coupling and decoherence effects in multimode systems. In this paper, we studied that the center-of-mass modes of multi-magnons can be simultaneously cooled to their quantum ground states. Our scheme is realized by adjusting the coupling position of the particle to compensate for the reduction in coupling strength due to magnonic excitations. Additionally, we find that the cooling rate of a magnon is influenced by its own coupling strength and the effective detuning. The numerical simulation results indicate that the lowest phonon occupancy can be cooled to less than 1 simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The data that have been used are confidential.

References

  1. Zhang, X., Zou, C.L., Jiang, L., Tang, H.: Cavity magnon-mechanics. Sci. Adv. 2, 1501286 (2016)

    Article  ADS  Google Scholar 

  2. Liao, Q.H., Deng, S.C., Song, M.L., et al.: Tunable magnomechanically induced transparency and slow\(-\)fast light propagation in a hybrid cavity magnomechanical system. Quantum Inf. Process. 23, 242 (2024)

    Article  MathSciNet  Google Scholar 

  3. Wang, J.: Entanglement in a cavity magnomechanical system. Quantum Inf. Process. 21, 105 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Sohail, A., Hassan, A., Ahmed, R., et al.: Generation of enhanced entanglement of directly and indirectly coupled modes in a two-cavity magnomechanical system. Quantum Inf. Process. 21, 207 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Du, H.J., Ma, X.Y., Guo, J.L.: Enhancement of magnon\(-\)magnon entanglement in cavity magnomechanics with an optical parametric amplifier. Quantum Inf. Process. 23, 198 (2024)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Collet, M., et al.: Generation of coherent spin-wave modes in Yttrium Iron Garnet microdiscs by spin-orbit torque. Nat. Commun. 7, 10377 (2016)

    Article  ADS  MATH  Google Scholar 

  7. Ho, M., Oudot, E., Bancal, J.D., Sangouard, N.: Witnessing optomechanical entanglement with photon counting. Phys. Rev. Lett. 121, 023602 (2018)

    Article  ADS  Google Scholar 

  8. Riedinger, R., et al.: Remote quantum entanglement between two micromechanical oscillators. Nature 556, 473 (2018)

    Article  ADS  MATH  Google Scholar 

  9. Yuan, H.Y., Yung, M.H.: Thermodynamic entanglement of magnonic condensates. Phys. Rev. B 97, 060405 (2018)

    Article  ADS  MATH  Google Scholar 

  10. Morimae, T., Sugita, A., Shimizu, A.: Macroscopic entanglement of many-magnon states. Phys. Rev. A 71, 032317 (2005)

    Article  ADS  MATH  Google Scholar 

  11. Sohail, A., Qasymeh, A., et al.: Entanglement and quantum steering in a hybrid quadpartite system. Phys. Rev. Appl. 20, 054062 (2023)

    Article  ADS  MATH  Google Scholar 

  12. Moslehi, M., Baghshahi, H.R., Faghihi, M.J., Mirafzali, S.Y.: Entanglement between photonic and magnonic modes in an open optomagnonical system. Opt. Laser Technol. 168, 109920 (2024)

    Article  MATH  Google Scholar 

  13. Kittel, C.: On the theory of ferromagnetic resonance absorption. Phys. Rev. 73, 155 (1948)

    Article  ADS  MATH  Google Scholar 

  14. Chang, Y.Y., Cheng, J.Q., Shao, H.: Magnon, doublon and quarton excitations in \(2D\)\(S=1/2\) trimerized Heisenberg models. Front. Phys. 19, 63202 (2024)

    Article  Google Scholar 

  15. Wang, K., Gao, Y.P., Jiao, R.Z.: Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics. Front. Phys. 17, 42201 (2022)

    Article  ADS  MATH  Google Scholar 

  16. Zhang, X., Wang, Y.P., Xiong, H.Y., et al.: Magnon dark modes and gradient memory. Nat. Commun. 6, 8914 (2015)

    Article  ADS  MATH  Google Scholar 

  17. Kong, C., Xiong, H., Wu, Y.: Magnon-induced nonreciprocity based on the magnon Kerr effect. Phys. Rev. Appl. 12, 034001 (2019)

    Article  ADS  MATH  Google Scholar 

  18. Zhang, D., Luo, X.Q., Wang, Y.P., et al.: Observation of the exceptional point in cavity-magnon-polaritons. Nat. Commun. 8, 1368 (2017)

    Article  ADS  MATH  Google Scholar 

  19. Liu, Z.X., Wang, B., Xiong, H., Wu, Y.: Magnon-induced high-order sideband generation. Opt. Lett. 43, 3698 (2018)

    Article  ADS  Google Scholar 

  20. Wang, B., Kong, C., Liu, Z.X., Xiong, H., Wu, Y.: Magnetic-field-controlled magnon chaos in an active cavity-magnon system. Phys. Rev. Lett. 16, 045208 (2019)

    Google Scholar 

  21. Soykal, O.O., Flatte, M.E.: Strong field interactions between a nanomagnet and a photonic cavity. Phys. Rev. Lett. 104, 077202 (2010)

    Article  ADS  MATH  Google Scholar 

  22. Liu, Z.X., Xiong, H., Wu, Y.: Magnon blockade in a hybrid ferromagnet-superconductor quantum system. Phys. Rev. B 100, 134421 (2019)

    Article  ADS  Google Scholar 

  23. Wang, Z.Y., He, X.W., Nu, X.H.: Nonreciprocal PT-symmetric magnon laser in spinning cavity optomagnonics. Opt. Express 32, 4987 (2024)

    Article  ADS  Google Scholar 

  24. Zhang, X., Zou, C.L., Jiang, L., Tang, H.X.: Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113, 156401 (2014)

    Article  ADS  Google Scholar 

  25. Wang, Y.P., Zhang, G.Q., Zhang, D., Li, T.F., Hu, C.M., You, J.Q.: Bistability of cavity magnon polaritons. Phys. Rev. Lett. 120, 057202 (2018)

    Article  ADS  MATH  Google Scholar 

  26. Shen, R.C., Wang, Y.P., Li, J., Zhu, S.Y., Agarwal, G.S., You, J.Q.: Long-time memory and ternary logic gate using a multistable cavity magnonic system. Phys. Rev. Lett. 127, 183202 (2021)

    Article  ADS  Google Scholar 

  27. Li, D.S., Kang, Y.H., Cheng, Y.H., Liu, Y.: One-step parity measurement of N cat-state qubits via reverse engineering and optimal control. Phys. Rev. A 109, 022437 (2024)

    Article  ADS  MathSciNet  Google Scholar 

  28. Li, J., Zhu, S.Y.: Entangling two magnon modes via magnetostrictive interaction. New J. Phys. 21, 085001 (2019)

    Article  ADS  MATH  Google Scholar 

  29. Tan, H.: Genuine photon-magnon-phonon Einstein-Podolsky-Rosen steerable nonlocality in a continuously-monitored cavity magnomechanical system. Phys. Rev. Res. 1, 033161 (2019)

    Article  Google Scholar 

  30. Zhang, W., Wang, D.Y., Bai, C.H., et al.: Generation and transfer of squeezed states in a cavity magnomechanical system by two-tone microwave fields. Opt. Express 29, 11773 (2021)

    Article  ADS  MATH  Google Scholar 

  31. Chen, Y.T., Du, L., Zhang, Y., et al.: Perfect transfer of enhanced entanglement and asymmetric steering in a cavity-magnomechanical system. Phys. Rev. A 103, 053712 (2021)

    Article  ADS  Google Scholar 

  32. Yu, M., Shen, H., Li, J.: Magnetostrictively induced stationary entanglement between two microwave fields. Phys. Rev. Lett. 124, 213604 (2020)

    Article  ADS  Google Scholar 

  33. Wallraff, A., Schuster, D.I., Blais, A., et al.: Strong coupling of a single photon to a superconducting qubit. Nature 431, 162 (2004)

    Article  ADS  MATH  Google Scholar 

  34. Roy, C., Hughes, S.: Phonon-dressed Mollow triplet in the regime of cavity-QED. Phys. Rev. Lett. 106, 247403 (2011)

    Article  ADS  MATH  Google Scholar 

  35. Wang, B., Liu, Z.X., Kong, C., Xiong, H., Wu, Y.: Magnon-induced transparency and amplification in PT-symmetric cavity-magnon system. Opt. Express 26, 20248 (2018)

    Article  ADS  Google Scholar 

  36. Xu, H.P., Wang, Y., Gao, J.M., et al.: Kerr nonlinearity assisted magnetically induced transparency in cavity magnon polaritons. Opt. Lett. 49, 367 (2024)

    Article  ADS  MATH  Google Scholar 

  37. Marquardt, F., Chen, J.P., Clerk, A., et al.: Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    Article  ADS  MATH  Google Scholar 

  38. Ludwig, M., Marquardt, F.: Quantum many-body dynamics in optomechanical arrays. Phys. Rev. Lett. 111, 073603 (2013)

    Article  ADS  MATH  Google Scholar 

  39. Shen, Z., Zhang, Y.L., Chen, Y., et al.: Experimental realization of optomechanically induced non-reciprocity. Nat. Photon. 10, 657 (2016)

    Article  ADS  MATH  Google Scholar 

  40. Li, J.M., Fei, S.M.: Quantum entanglement generation on magnons assisted with microwave cavities coupled to a superconducting qubit. Front. Phys. 18, 41301 (2023)

    Article  ADS  Google Scholar 

  41. Li, J., Zhu, S.Y., Agarwal, G.S.: Magnon-photon-phonon entanglement in cavity magnomechanics. Phys. Rev. Lett. 121, 203601 (2018)

    Article  ADS  Google Scholar 

  42. Yuan, H.Y., Zheng, S.S., He, Q.Y.: Enhancement of magnon-magnon entanglement inside a cavity. Phys. Rev. B 101, 014419 (2023)

    Article  ADS  MATH  Google Scholar 

  43. Zheng, L.L., Shi, W.X., Shen, K.: Controlling magnon-magnon entanglement and steering by atomic coherence. Opt. Express 31, 32953 (2023)

    Article  ADS  Google Scholar 

  44. Zhang, Z., Scully, M.O., Agarwal, G.S.: Deterministic quantum entanglement between macroscopic ferrite samples. Phys. Rev. Res. 1, 023021 (2019)

    Article  MATH  Google Scholar 

  45. Kong, C., Liu, J.B., Xiong, H.: Nonreciprocal microwave transmission under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect. Front. Phys. 18, 12501 (2023)

    Article  ADS  MATH  Google Scholar 

  46. Nair, J.M.P., Agarwal, G.S.: Quantum entanglement between two magnon modes via Kerr nonlinearity driven far from equilibrium. Appl. Phys. Lett. 117, 084001 (2020)

    Article  ADS  Google Scholar 

  47. Inman, J., Xiong, Y., Bidthanapally, R.: Hybrid Magnonics for Short-Wavelength Spin Waves Facilitated by a Magnetic Heterostructure. Phys. Rev. Appl. 17, 044034 (2022)

    Article  ADS  Google Scholar 

  48. Genes, C., Vitali, D., Tombesi, P.: Ground-state cooling of a micromechanical oscillator: generalized framework for cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2007)

    Article  ADS  MATH  Google Scholar 

  49. Roszak, K., Horodecki, P., Horodecki, R.: Sudden death of effective entanglement. Phys. Rev. A 81, 042308 (2009)

    Article  ADS  MATH  Google Scholar 

  50. Huang, J., Lai, D.G., Huang, C., Liu, J.F., Huang, F., Liao, J.Q.: Multimode optomechanical cooling via general dark-mode control. Phys. Rev. A 106, 013526 (2022)

    Article  ADS  MATH  Google Scholar 

  51. Lai, D.G., Qin, W., Hou, B.P.: Significant enhancement in refrigeration and entanglement in auxiliary-cavity-assisted optomechanical systems arXiv:2110.02663 (2021)

  52. Machnes, S., Cerrillo, J., Aspelmeyer, M.: Pulsed laser cooling for cavity-optomechanical resonators. Phys. Rev. Lett. 108, 153601 (2012)

    Article  ADS  Google Scholar 

  53. Qiu, W., Cheng, X., Chen, A.: Controlling quantum coherence and entanglement in cavity magnomechanical systems. Phys. Rev. A 105, 063718 (2022)

    Article  ADS  Google Scholar 

  54. Schleier-Smith, M.H., Leroux, I.D., Zhang, H.: Optomechanical cavity cooling of an atomic ensemble. Phys. Rev. Lett. 107, 143005 (2011)

    Article  ADS  MATH  Google Scholar 

  55. Potts, C.A., Varga, E., Bittencourt, V.A.: Dynamical backaction magnomechanics. Phys. Rev. X 11, 031053 (2021)

    Google Scholar 

  56. Ockeloen-Korppi, C.F., Gely, M.F., Damskagg, E., Jenkins, E.: Sideband cooling of nearly degenerate micromechanical oscillators in a multimode optomechanical system. Phys. Rev. A 99, 023826 (2019)

    Article  ADS  Google Scholar 

  57. Huai, S.N., Liu, Y.L., Zhang, J.: Symmetric-like cavity magnomechanical system. Phys. Rev. A 99, 043803 (2019)

    Article  ADS  MATH  Google Scholar 

  58. Liao, C.G., Chen, R.X., Xie, H.: Reservoir-engineered entanglement in a hybrid modulated three-mode optomechanical system. Phys. Rev. A 97, 042314 (2018)

    Article  ADS  MATH  Google Scholar 

  59. Ying, Y.L., Wang, D.: Quantum theory of transmission line resonator-assisted cooling of a micromechanical resonator. Phys. Rev. B 78, 134301 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Wang, Y.P., Zhang, G.Q., Zhang, D.: Bistability of cavity magnon polaritons. Phys. Rev. Lett. 120, 057202 (2018)

    Article  ADS  MATH  Google Scholar 

  61. Xie, H., He, L.W., Shang, X.: Nonreciprocal photon blockade in cavity optomagnonics. Phys. Rev. A 104, 063713 (2022)

    ADS  MathSciNet  Google Scholar 

  62. Wang, M., Kong, C., Sun, Z.Y., Zhang, D., Zheng, L.: Nonreciprocal high-order sidebands induced by magnon Kerr nonlinearity. Phys. Rev. A 104, 033708 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Asjad, M., Li, J., Zhu, S.Y., You, J.Q.: Magnon squeezing enhanced ground-state cooling in cavity magnomechanics. Fun. Res. 3, 3202337 (2023)

    Google Scholar 

  64. Ganthya, D., Parai, A., Jana, P.C.: Simultaneous ground state cooling of two mechanical resonators weakly coupled with three optical cavities in the unresolved sideband regime. Opt. Laser Technol. 177, 111169 (2024)

    Article  MATH  Google Scholar 

  65. Li, J., Zhu, S.Y., Agarwal, G.S.: Squeezed states of magnons and phonons in cavity magnomechanics. Phys. Rev. A 99, 021801 (2019)

    Article  ADS  Google Scholar 

  66. Ding, M.S., Zheng, L., Li, C.: Ground-state cooling of a magnomechanical resonator induced by magnetic damping. J. Opt. Soc. Am. B 37, 627 (2020)

    Article  ADS  MATH  Google Scholar 

  67. Li, J., Wang, Y.P., You, J.Q., et al.: Squeezing microwaves by magnetostriction. Nat. Sci. Rev. 10, 247 (2023)

    Article  MATH  Google Scholar 

  68. Liu, J., Liu, Y.P., Tan, L., et al.: Simultaneously enhanced magnomechanical cooling and entanglement assisted by an auxiliary microwave cavity. Opt. Express 32, 722 (2024)

    Article  ADS  MATH  Google Scholar 

  69. Yang, J.Z., Wang, L., Liu, Y.M.: Ground state cooling of a magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature. Front. Phys. 15, 52504 (2020)

    Article  ADS  Google Scholar 

  70. Seberson, T., Ju, P., Ahn, J., Bang, J., Li, T., Robicheaux, F.: Simulation of sympathetic cooling of an optically levitated magnetic nanoparticle via coupling to a cold atomic gas. J. Opt. Soc. Am. B 37, 3714 (2020)

    Article  ADS  Google Scholar 

  71. Rusconi, C.C., Pchhacker, V., Kustura, K., Cirac, J.I., Romero-Isart, O.: Quantum spin stabilized magnetic levitation. Phys. Rev. Lett. 119, 167202 (2017)

    Article  ADS  Google Scholar 

  72. Gieseler, J., Kabcenell, A., Rosenfeld, E., et al.: Single-spin magnetomechanics with levitated micromagnets. Phys. Rev. Lett. 124, 163604 (2020)

    Article  ADS  Google Scholar 

  73. Huillery, P., Delord, T., Nicolas, L., Bossche, M.V., Perdriat, M., Htelet, G.: Spin mechanics with levitating ferromagnetic particles. Phys. Rev. B 101, 134415 (2020)

    Article  ADS  Google Scholar 

  74. Delic, U., Reisenbauer, M., Dare, K., Grass, D., Vuletic, V., Kiesel, N., Aspelmeyer, M.: Cooling of a levitated nanoparticle to the motional quantum ground state. Science 367, 892 (2020)

    Article  ADS  Google Scholar 

  75. Kani, A., Sarma, B., Twamley, J.: Accelerated motional cooling with deep reinforcement learning. Phys. Rev. Res. 4, L042038 (2022)

    Article  Google Scholar 

  76. Sarma, B., Borah, S., Kani, A., Twamley, J.: Intensive cavity-magnomechanical cooling of a levitated macromagnet. Phys. Rev. Lett. 128, 013602 (2022)

    Article  ADS  Google Scholar 

  77. Li, T., Kheifets, S., Medellin, D., Raizen, M.G.: Measurement of the instantaneous velocity of a Brownian particle. Science 328, 1673 (2010)

    Article  ADS  MATH  Google Scholar 

  78. Hu, J.T., Luqiao, L.: Strong coupling between microwave photons and nanomagnet magnons. Phys. Rev. Lett. 123, 107702 (2019)

    Article  ADS  MATH  Google Scholar 

  79. Zhang, X.F., Zou, C.L., Jiang, L.: Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113, 156401 (2014)

    Article  ADS  Google Scholar 

  80. Tabuchi, Y., Ishikawa, Y.: Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113, 083603 (2014)

    Article  ADS  MATH  Google Scholar 

  81. Huang, J., Lai, D.G., Jin, F., et al.: Multimode optomechanical cooling via general dark-mode control. Phys. Rev. A 106, 013526 (2022)

    Article  ADS  Google Scholar 

  82. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  MATH  Google Scholar 

  83. Liu, J.Y., Liu, W., Xu, D., et al.: Ground-state cooling of multiple near-degenerate mechanical modes. Phys. Rev. A 105, 053518 (2022)

    Article  ADS  MATH  Google Scholar 

  84. Genes, M., Vitali, D., Tombesi, P., Gigan, S., et al.: Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008)

    Article  ADS  MATH  Google Scholar 

  85. Xin, Y.Z., Liang, W., Mu, L.Y., et al.: Ground-state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature. Front. Phys. 15, 52504 (2020)

    Article  ADS  Google Scholar 

  86. Kuhr, S., Gleyzes, S., Guerlin, C., et al.: Ultrahigh finesse Fabry-Perot superconducting resonator. Appl. Phys. Lett. 90, 164101 (2007)

    Article  ADS  Google Scholar 

  87. Romanenko, A., Pilipenko, R., Grassellino, A., et al.: Three-dimensional superconducting resonators at \( T < 20 \, \text{ mK } \) with photon lifetimes up to \( t = 2 \, \text{ s } \). Phys. Rev. Appl. 13, 034032 (2020)

    Article  ADS  Google Scholar 

  88. Gieseler, J., Novotny, L., Quidant, R.: Thermal nonlinearities in a nanomechanical oscillator. Nat. Phys. 9, 806 (2013)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 12074070 and the Natural Science Foundation of Fujian Province under Grant No.2020J01471.

Author information

Authors and Affiliations

Authors

Contributions

C.L.: Proposed the research question, designed the theoretical framework, completed the derivations, conducted numerical simulations, analyzed the results, and wrote the article. L.Y: Completed the revisions of the paper and assisted in theoretical discussions. B.L.: Revised the draft. Y.S.Y: Revised the draft. L.R.X: Completed the revisions of the paper and ensured the scientific integrity of the research. Z.Z.R: Provided overall guidance, reviewed the content, and ensured the scientific integrity of the research. All authors reviewed the final manuscript and agreed to its submission.

Corresponding authors

Correspondence to Rong-Xiang Luo or Zhi-Rong Zhong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Liu, Y., Bin, L. et al. Simultaneous cooling of two levitated macromagnets in cavity magnomechanical system. Quantum Inf Process 24, 76 (2025). https://doi.org/10.1007/s11128-025-04690-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-025-04690-0

Keywords