Skip to main content

Advertisement

Log in

Locally distinguishing nonlocal orthogonal product states with entanglement as a universal auxiliary resource

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, three classes of orthogonal product states in \(\mathbb {C}^m\otimes \mathbb {C}^n(m\ge 3, n\ge 3)\) which cannot be exactly discriminated by local operations and classical communication (LOCC) have been constructed, respectively, by Xu et al. (Quantum Inf. Process. 20: 128, 2021) and Zhu et al. (Physica A 624: 128956, 2023). However, it is interesting to know, in order to perfectly distinguish these states by LOCC, how much entanglement resources are sufficient and/or necessary and whether it is possible to find a universal auxiliary resource. In this paper, we present that by using only one two-qubit maximally entangled state as a general auxiliary resource, the above locally indistinguishable states can all be perfectly identified by LOCC. And the general process of auxiliary local discrimination using entanglement is discussed in detail. The local distinguishing protocols we designed not only utilize minimal amount of assisted entanglement, but also show that the strength of these nonlocal sets is minimal from the point of view of auxiliary resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Duan, R.Y., Feng, Y., Xin, Y., Ying, M.S.: Distinguishability of quantum states by separable operations. IEEE Trans. Inf. Theory 55, 1320 (2009)

    MathSciNet  Google Scholar 

  2. Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21, 98 (2015)

    ADS  Google Scholar 

  3. Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)

    ADS  Google Scholar 

  4. Horodecki, M., Sen, A., Sen, U., Horodecki, K.: Local indistinguishability: more nonlocality with less entanglement. Phys. Rev. Lett. 90, 047902 (2003)

    ADS  Google Scholar 

  5. Bandyopadhyay, S.: More nonlocality with less purity. Phys. Rev. Lett. 106, 210402 (2011)

    ADS  Google Scholar 

  6. Yu, N.K., Duan, R.Y., Ying, M.S.: Four locally indistinguishable ququad-ququad orthogonal maximally entangled states. Phys. Rev. Lett. 109, 020506 (2012)

    ADS  Google Scholar 

  7. Wu, X.H., Yu, S.L., Zhou, T.: One-photon interferometer for realizing optimal unambiguous discrimination among quantum subsets. Phys. Rev. A 79, 052302 (2009)

    ADS  Google Scholar 

  8. Bandyopadhyay, S., Ghosh, S., Kar, G.: LOCC distinguishability of unilaterally transformable quantum states. New J. Phys. 13, 123013 (2011)

    ADS  Google Scholar 

  9. Zhou, T.: Success probabilities for universal unambiguous discriminators between unknown pure states. Phys. Rev. A 89, 014301 (2014)

    ADS  Google Scholar 

  10. Lebl, J., Shakeel, A., Wallach, N.: Local distinguishability of generic unentangled orthonormal bases. Phys. Rev. A 93, 012330 (2016)

    ADS  Google Scholar 

  11. Zhang, Z.C., Gao, F., Tian, G.J., Cao, T.Q., Wen, Q.Y.: Nonlocality of orthogonal product basis quantum states. Phys. Rev. A 90, 022313 (2014)

    ADS  Google Scholar 

  12. Xu, G.B., Wen, Q.Y., Qin, S.J., Yang, Y.H., Gao, F.: Quantum nonlocality of multipartite orthogonal product states. Phys. Rev. A 93, 032341 (2016)

    ADS  Google Scholar 

  13. Zhang, Z.C., Gao, F., Qin, S.J., Yang, Y.H., Wen, Q.Y.: Nonlocality of orthogonal product states. Phys. Rev. A 92, 012332 (2015)

    ADS  Google Scholar 

  14. Bennett, C.H., Divincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070 (1999)

    ADS  MathSciNet  Google Scholar 

  15. Walgate, J., Short, A.J., Hardy, L., Vedral, V.: Local distinguishability of multipartite orthogonal quantum states. Phys. Rev. Lett. 85, 4972 (2000)

    ADS  Google Scholar 

  16. Bandyopadhyay, S., Brassard, G., Kimmel, S., Wootters, W.K.: Entanglement cost of nonlocal measurements. Phys. Rev. A 80, 012313 (2009)

    ADS  Google Scholar 

  17. Bandyopadhyay, S.: Entanglement cost of two-qubit orthogonal measurements. J. Phys. A: Math. Theor. 43, 455303 (2010)

    MathSciNet  Google Scholar 

  18. Rinaldis, S.D.: Distinguishability of complete and unextendible product bases. Phys. Rev. A 70, 022309 (2004)

    ADS  MathSciNet  Google Scholar 

  19. Bandyopadhyay, S., Halder, S., Nathanson, M.: Optimal resource states for local state discrimination. Phys. Rev. A 97, 022314 (2018)

    ADS  Google Scholar 

  20. Zhang, Z.C., Gao, F., Cao, T.Q., Qin, S.J., Wen, Q.Y.: Entanglement as a resource to distinguish orthogonal product states. Sci. Rep. 6, 30493 (2016)

    ADS  Google Scholar 

  21. Zhang, Z.C., Wu, X., Zhang, X.: Locally distinguishing unextendible product bases by using entanglement efficiently. Phys. Rev. A 101, 022306 (2020)

    ADS  MathSciNet  Google Scholar 

  22. Li, H.Q., Jing, N.H., Tang, X.L.: Distinguishing multipartite orthogonal product states by LOCC with entanglement as a resource. Quantum Inf. Process. 17, 195 (2018)

    ADS  MathSciNet  Google Scholar 

  23. Güngör, Ö., Turgut, S.: Entanglement-assisted state discrimination and entanglement preservation. Phys. Rev. A 94, 032330 (2016)

    ADS  Google Scholar 

  24. Cohen, S.M.: Local distinguishability with preservation of entanglement. Phys. Rev. A 75, 052313 (2007)

    ADS  MathSciNet  Google Scholar 

  25. Bandyopadhyay, S., Cosentino, A., Johnston, N., Russo, V., Watrous, J., Yu, N.: Limitations on separable measurements by convex optimization. IEEE Trans. Inf. Theory 61, 3593 (2015)

    MathSciNet  Google Scholar 

  26. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  Google Scholar 

  27. DiVincenzo, D.P., Leung, D.W., Terhal, B.M.: Quantum data hiding. IEEE Trans. Inf. Theory 48, 580 (2002)

    MathSciNet  Google Scholar 

  28. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2008)

    ADS  MathSciNet  Google Scholar 

  29. Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 91, 022330 (2015)

    ADS  Google Scholar 

  30. Bennett, C.H., Wiesner, S.J.: Communication via one and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    ADS  MathSciNet  Google Scholar 

  31. Cao, T.Q., Xin, Q.L., Zhang, Z.C.: Quantum entanglement as a resource to locally distinguish orthogonal product states. Quantum Inf. Process. 20, 362 (2021)

    ADS  MathSciNet  Google Scholar 

  32. Bhunia, A., Biswas, I., Chattopadhyay, I., Sarkar, D.: More assistance of entanglement, less rounds of classical communication. J. Phys. A: Math. Theor. 56, 365303 (2023)

    MathSciNet  Google Scholar 

  33. Cohen, S.M.: Understanding entanglement as resource: locally distinguishing unextendible product bases. Phys. Rev. A 77, 012304 (2008)

    ADS  Google Scholar 

  34. Zhang, Z.C., Song, Y.Q., Song, T.T., Gao, F., Qin, S.J., Wen, Q.Y.: Local distinguishability of orthogonal quantum states with multiple copies of \(2\otimes 2\) maximally entangled states. Phys. Rev. A 97, 022334 (2018)

    ADS  Google Scholar 

  35. Li, L.J., Gao, F., Zhang, Z.C., Wen, Q.Y.: Local distinguishability of orthogonal quantum states with no more than one ebit of entanglement. Phys. Rev. A 99, 012343 (2019)

    ADS  Google Scholar 

  36. Bandyopadhyay, S., Halder, S., Nathanson, M.: Entanglement as a resource for local state discrimination in multipartite systems. Phys. Rev. A 94, 022311 (2016)

    ADS  Google Scholar 

  37. Halder, S.: Several nonlocal sets of multipartite pure orthogonal product states. Phys. Rev. A 98, 022303 (2018)

    ADS  Google Scholar 

  38. Li, L.J., Gao, F., Zhang, Z.C., Wen, Q.Y.: Using entanglement more efficiently in distinguishing orthogonal product states by LOCC. Quantum Inf. Process. 18, 330 (2019)

    ADS  MathSciNet  Google Scholar 

  39. Bhunia, A., Chattopadhyay, I., Sarkar, D.: Nonlocality of tripartite orthogonal product states. Quantum Inf. Process. 20, 45 (2021)

    ADS  MathSciNet  Google Scholar 

  40. Zhang, Z.C., Wang, Q.L.: Locally distinguishing multipartite orthogonal product states with different entanglement resource. Quantum Inf. Process. 20, 75 (2021)

    ADS  MathSciNet  Google Scholar 

  41. Bhunia, A., Chattopadhyay, I., Sarkar, D.: Nonlocality without entanglement: an acyclic configuration. Quantum Inf. Process. 21, 169 (2022)

    ADS  MathSciNet  Google Scholar 

  42. Zhang, Z.C., Wei, X.J., Wang, A.L.: Entanglement as a resource to locally distinguish tripartite quantum states. Quantum Inf. Process. 21, 342 (2022)

    ADS  MathSciNet  Google Scholar 

  43. Cao, H.Q., Zuo, H.J.: Locally distinguishing nonlocal sets with entanglement resource. Phys. A 623, 128852 (2023)

    MathSciNet  Google Scholar 

  44. Xu, G.B., Jiang, D.H.: Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system. Quantum Inf. Process. 20, 128 (2021)

    ADS  MathSciNet  Google Scholar 

  45. Zhu, Y.Y., Jiang, D.H., Xu, G.B.: Completable sets of orthogonal product states with minimal nonlocality. Phys. A 624, 128956 (2023)

    MathSciNet  Google Scholar 

  46. Halder, S., Banik, M., Agrawal, S., Bandyopadhyay, S.: Strong quantum nonlocality without entanglement. Phys. Rev. Lett. 122, 040403 (2019)

    ADS  Google Scholar 

  47. Rout, S., Maity, A.G., Mukherjee, A., Halder, S., Banik, M.: Genuinely nonlocal product bases: classification and entanglement assisted discrimination. Phys. Rev. A 100, 032321 (2019)

    ADS  MathSciNet  Google Scholar 

  48. Halder, S., Sengupta, R.: Distinguishability classes, resource sharing, and bound entanglement distribution. Phys. Rev. A 101, 012311 (2020)

    ADS  Google Scholar 

  49. Yuan, P., Tian, G.J., Sun, X.M.: Strong quantum nonlocality without entanglement in multipartite quantum systems. Phys. Rev. A 102, 042228 (2020)

    ADS  MathSciNet  Google Scholar 

  50. Wei, X.J., Xie, Z.S., Li, Y.L., Zhang, Z.C.: Locally distinguishing tripartite strongly nonlocal quantum states with entanglement resource. Quantum Inf. Process. 23, 361 (2024)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grants No. 61701343 and No. 11701423) and the Natural Science Foundation of Tianjin (Grant No. 23JCQNJC01150).

Author information

Authors and Affiliations

Authors

Contributions

T.Q.C. and Q.L.X. initiated the idea. T.Q.C., B.H.G. and L.Z. wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Tian-Qing Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, TQ., Gao, BH., Xin, QL. et al. Locally distinguishing nonlocal orthogonal product states with entanglement as a universal auxiliary resource. Quantum Inf Process 24, 104 (2025). https://doi.org/10.1007/s11128-025-04727-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-025-04727-4

Keywords