Skip to main content

Heavy traffic analysis of maximum pressure policies for stochastic processing networks with multiple bottlenecks

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

A class of open processing networks operating under a maximum pressure policy is considered in the heavy traffic regime. We prove that the diffusion-scaled workload process for a network with several bottleneck resources converges to a semimartingale reflecting Brownian motion (SRBM) living in a polyhedral cone. We also establish a state space collapse result that the queue length process can be lifted from the lower-dimensional workload process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ata, B., Kumar, S.: Heavy traffic analysis of open processing networks with complete resource pooling: asymptotic optimality of discrete review policies. Ann. Appl. Probab. 15, 331–391 (2005)

    Article  Google Scholar 

  2. Bell, S.L., Williams, R.J.: Dynamic scheduling of a parallel server system in heavy traffic with complete resource pooling: asymptotic optimality of a threshold policy. Electron. J. Probab. 10, 1044–1115 (2005)

    Google Scholar 

  3. Bell, S.L., Williams, R.L.: Dynamic scheduling of a system with two parallel servers in heavy traffic with resource pooling: asymptotic optimality of a threshold policy. Ann. Appl. Probab. 11, 608–649 (2001)

    Article  Google Scholar 

  4. Bertsekas, D., Gallager, R.: Data Networks. Prentice-Hall, Englewood Cliffs (1992)

    Google Scholar 

  5. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)

    Google Scholar 

  6. Bramson, M.: State space collapse with application to heavy traffic limits for multiclass queueing networks. Queueing Syst.: Theory Appl. 30, 89–148 (1998)

    Article  Google Scholar 

  7. Bramson, M., Dai, J.G.: Heavy traffic limits for some queueing networks. Ann. Appl. Probab. 11, 49–90 (2001)

    Article  Google Scholar 

  8. Bramson, M., Williams, R.J.: Two workload properties for Brownian networks. Queueing Syst. 45, 191–221 (2003)

    Article  Google Scholar 

  9. Buzacott, J.A., Shanthikumar, J.G., Yao, D.D.: Jackson network models of manufacturing systems. In: Yao, D.D. (ed.) Stochastic Modeling and Analysis of Manufacturing Systems. Springer Series in Operations Research. Springer, New York (1994)

    Google Scholar 

  10. Chen, H., Mandelbaum, A.: Stochastic discrete flow networks: Diffusion approximation and bottlenecks. Ann. Probab. 19, 1463–1519 (1991)

    Article  Google Scholar 

  11. Chen, H., Yao, D.: Fundamentals of Queueing Networks: Performance, Asymptotics, and Optimization. Springer, New York (2001)

    Google Scholar 

  12. Chen, H., Zhang, H.: Diffusion approximations for some multiclass queueing networks with FIFO service disciplines. Math. Oper. Res. 25, 679–707 (2000)

    Article  Google Scholar 

  13. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, New York (1992)

    Google Scholar 

  14. Dai, J.G., Dai, W.: A heavy traffic limit theorem for an open queueing network with finite buffers. Queueing Syst.: Theory Appl. 32, 5–40 (1999)

    Article  Google Scholar 

  15. Dai, J.G., Lin, W.: Maximum pressure policies in stochastic processing networks. Oper. Res. 53, 197–218 (2005)

    Article  Google Scholar 

  16. Dai, J.G., Lin, W.: Asymptotic optimality of maximum pressure policies in stochastic processing networks. Ann. Appl. Probab. (2008, to appear)

  17. Dai, J.G., Williams, R.J.: Existence and uniqueness of semimartingale reflecting Brownian motions in convex polyhedrons. Theory Probab. Its Appl. 40, 3–53 (1995)

    Google Scholar 

  18. Dai, J.G., Williams, R.J.: Stochastic networks, fluids and diffusions. Unpublished Draft (2003). www.isye.gatech.edu/faculty/dai/

  19. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, New York (1986)

    Google Scholar 

  20. Georgiadis, L., Neely, M.J., Tassiulas, L.: Resource allocation and cross-layer control in wireless networks. Found. Trends Netw. 1, 1–144 (2006)

    Article  Google Scholar 

  21. Gut, A.: Stopped Random Walks: Limit Theorems and Applications. Springer, Berlin (1988)

    Google Scholar 

  22. Harrison, J.M.: Brownian models of queueing networks with heterogeneous customer populations. In: Fleming, W., Lions, P.L. (eds.) Stochastic Differential Systems, Stochastic Control Theory and Their Applications. The IMA Volumes in Mathematics and Its Applications, vol. 10. Springer, New York (1988)

    Google Scholar 

  23. Harrison, J.M.: The BIGSTEP approach to flow management in stochastic processing networks. In: Kelly, F.P., Zachary, S., Ziedins, I. (eds.) Stochastic Networks: Theory and Applications. Lecture Note Series, vol. 4, pp. 57–90. Oxford University Press, London (1996)

    Google Scholar 

  24. Harrison, J.M.: Heavy traffic analysis of a system with parallel servers: asymptotic analysis of discrete-review policies. Ann. Appl. Probab. 8, 822–848 (1998)

    Article  Google Scholar 

  25. Harrison, J.M.: Brownian models of open processing networks: canonical representation of workload. Ann. Appl. Probab. 10, 75–103 (2000)

    Article  Google Scholar 

  26. Harrison, J.M.: Stochastic networks and activity analysis. In: Suhov, Y. (ed.) Analytic Methods in Applied Probability. In Memory of Fridrik Karpelevich. American Mathematical Society, Providence (2002)

    Google Scholar 

  27. Harrison, J.M.: A broader view of Brownian networks. Ann. Appl. Probab. 13, 1119–1150 (2003)

    Article  Google Scholar 

  28. Harrison, J.M., López, M.J.: Heavy traffic resource pooling in parallel-server systems. Queueing Syst.: Theory Appl. 33, 339–368 (1999)

    Article  Google Scholar 

  29. Harrison, J.M., Van Mieghem, J.A.: Dynamic control of Brownian networks: state space collapse and equivalent workload formulations. Ann. Appl. Probab. 7, 747–771 (1997)

    Article  Google Scholar 

  30. Iglehart, D.L., Whitt, W.: Multiple channel queues in heavy traffic I. Adv. Appl. Probab. 2, 150–177 (1970)

    Article  Google Scholar 

  31. Kang, W., Williams, R.J.: An n×n input queued crossbar switch operating under a maximum weight matching policy in heavy traffic. Working Paper (2006)

  32. Kang, W., Williams, R.J.: An invariance principle for semimartingale reflecting Brownain motions in domains with piecewise smooth boundaries. Ann. Appl. Probab. 17, 741–779 (2007)

    Article  Google Scholar 

  33. Kleinrock, L.: Queueing Systems: Computer Applications, vol. II. Wiley, New York (1976)

    Google Scholar 

  34. Laws, C.N.: Dynamic routing in queueing networks. Ph.D. thesis, Cambridge University (1990)

  35. Laws, C.N.: Resource pooling in queueing networks with dynamic routing. Adv. Appl. Probab. 24, 699–726 (1992)

    Article  Google Scholar 

  36. Mandelbaum, A., Stolyar, A.L.: Scheduling flexible servers with convex delay costs: heavy traffic optimality of the generalized c μ-rule. Oper. Res. 52, 836–855 (2004)

    Article  Google Scholar 

  37. Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill, New York (1991)

    Google Scholar 

  38. Stolyar, A.L.: Maxweight scheduling in a generalized switch: state space collapse and workload minimization in heavy traffic. Ann. Appl. Probab. 14, 1–53 (2004)

    Article  Google Scholar 

  39. Tassiulas, L.: Adaptive back-pressure congestion control based on local information. IEEE Trans. Autom. Control 40, 236–250 (1995)

    Article  Google Scholar 

  40. Tassiulas, L., Bhattacharya, P.B.: Allocation of interdependent resources for maximal throughput. Stoch. Models 16, 27–48 (2000)

    Article  Google Scholar 

  41. Tassiulas, L., Ephremides, A.: Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Trans. Autom. Control 37, 1936–1948 (1992)

    Article  Google Scholar 

  42. Tassiulas, L., Ephremides, A.: Dynamic server allocation to parallel queues with randomly varying connectivity. IEEE Trans. Inf. Theory 39, 466–478 (1993)

    Article  Google Scholar 

  43. Whitt, W.: Stochastic-Process Limits. Springer, New York (2002)

    Google Scholar 

  44. Williams, R.J.: On the approximation of queueing networks in heavy traffic. In: Kelly, F.P., Zachary, S., Ziedins, I. (eds.) Stochastic Networks: Theory and Applications. Royal Statistical Society, Oxford University Press, London (1996)

    Google Scholar 

  45. Williams, R.J.: Diffusion approximations for open multiclass queueing networks: sufficient conditions involving state space collaps. Queueing Syst.: Theory Appl. 30, 27–88 (1998)

    Article  Google Scholar 

  46. Williams, R.J.: An invariance principle for semimartingale reflecting Brownian motions in an orthant. Queueing Syst.: Theory Appl. 30, 5–25 (1998)

    Article  Google Scholar 

  47. Williams, R.J.: On dynamic scheduling of a parallel server system with complete resource pooling. In: McDonald, D.R., Turner, S.R.E. (eds.) Analysis of Communication Networks: Call Centres, Traffic and Performance. Fields Institute Communications, vol. 8. American Mathematical Society, Providence (2000)

    Google Scholar 

  48. Yao, D.D.: Stochastic Modeling and Analysis of Manufacturing Systems. Springer Series in Operations Research. Springer, New York (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barış Ata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ata, B., Lin, W. Heavy traffic analysis of maximum pressure policies for stochastic processing networks with multiple bottlenecks. Queueing Syst 59, 191–235 (2008). https://doi.org/10.1007/s11134-008-9082-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-008-9082-9

Keywords

Mathematics Subject Classification (2000)