Skip to main content
Log in

Stabilizing performance in a single-server queue with time-varying arrival rate

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We consider a class of general \(G_t/G_t/1\) single-server queues, including the \(M_t/M_t/1\) queue, with unlimited waiting space, service in order of arrival, and a time-varying arrival rate, where the service rate at each time is subject to control. We study the rate-matching control, where the service rate is made proportional to the arrival rate. We show that the model with the rate-matching control can be regarded as a deterministic time transformation of a stationary G / G / 1 model, so that the queue length distribution is stabilized as time evolves. However, the time-varying virtual waiting time is not stabilized. We show that the time-varying expected virtual waiting time with the rate-matching service-rate control becomes inversely proportional to the arrival rate in a heavy-traffic limit. We also show that no control that stabilizes the queue length asymptotically in heavy traffic can also stabilize the virtual waiting time. Then we consider two square-root service-rate controls and show that one of these stabilizes the waiting time when the arrival rate changes slowly relative to the average service time, so that a pointwise stationary approximation is appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bassamboo, A., Harrison, J.M., Zeevi, A.: Design and control of a large call center: asymptotic analysis of an LP-based method. Oper. Res. 54(3), 419–435 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertsimas, D., Mourtzinou, G.: Transient laws of nonstationary queueing systems and their applications. Queueing Syst. 25, 315–359 (1997)

    Article  MathSciNet  Google Scholar 

  3. Bitran, G.R., Dasu, S.: A review of open queueing network models of manufacturing systems. Queueing Syst. 12, 95–134 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brown, L., Gans, N., Mandelbaum, A., Sakov, A., Shen, H., Zeltyn, S., Zhao, L.: Statistical analysis of a telephone call center: a queueing-science perspective. J. Am. Stat. Assoc. 100, 36–50 (2005)

    Article  CAS  MathSciNet  MATH  Google Scholar 

  5. Defraeye, M., Van Niewenhuyse, I.: Controlling excessive waiting times in small service systems with time-varying demand: an extension of the ISA algorithm. Decis. Support Syst. 54(4), 1558–1567 (2013)

    Article  Google Scholar 

  6. Eick, S.G., Massey, W.A., Whitt, W.: The physics of the \(M_t/G/\infty \) queue. Oper. Res. 41, 731–742 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eick, S.G., Massey, W.A., Whitt, W.: \(M_t/G/\infty \) queues with sinusoidal arrival rates. Manag. Sci. 39, 241–252 (1993)

    Article  MATH  Google Scholar 

  8. Falin, G.I.: Periodic queues in heavy traffic. Adv. Appl. Probab. 21, 485–487 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feldman, Z., Mandelbaum, A., Massey, W.A., Whitt, W.: Staffing of time-varying queues to achieve time-stable performance. Manag. Sci. 54(2), 324–338 (2008)

    Article  MATH  Google Scholar 

  10. Fischer, W., Meier-Hellstern, K.: The Markov-modulated Poisson process (MMPP) cookbook. Perform. Eval. 18, 149–171 (1992)

    Article  MathSciNet  Google Scholar 

  11. Fralix, B.H., Riano, G.: A new look at transient versions of Little’s law. J. Appl. Probab. 47, 459–473 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gebhardt, I., Nelson, B.L.: Transforming renewal processes for simulation of non-stationary arrival procsses. INFORMS J. Comput. 21, 630–640 (2009)

    Article  MathSciNet  Google Scholar 

  13. Green, L.V., Kolesar, P.J.: The pointwise stationary approximation for queues with nonstationary arrivals. Manag. Sci. 37, 84–97 (1991)

    Article  Google Scholar 

  14. Green, L.V., Kolesar, P.J., Whitt, W.: Coping with time-varying demand when setting staffing requirements for a service system. Prod. Oper. Manag. 16, 13–29 (2007)

    Article  Google Scholar 

  15. He, B., Liu, Y., Whitt, W.: Staffing a service system with non-Poisson nonstationary arrivals. Columbia University, working paper (2015)

  16. Heyman, D.P., Whitt, W.: The asymptotic behavior of queues with time-varying arrival. J. Appl. Probab. 21(1), 143–156 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jennings, O.B., Mandelbaum, A., Massey, W.A., Whitt, W.: Server staffing to meet time-varying demand. Manag. Sci. 42, 1383–1394 (1996)

    Article  MATH  Google Scholar 

  18. Kleinrock, L.: Communication Nets: Stochastic Message Flow and Delay. Dover, New York (1964)

    Google Scholar 

  19. Kleinrock, L.: Queueing Syst., vol. 2. Wiley, New York (1976)

    Google Scholar 

  20. Liu, Y., Whitt, W.: Nearly periodic behavior in the overloaded \(G/D/S+GI\) queue. Stoch. Syst. 1(2), 340–410 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, Y., Whitt, W.: Stabilizing customer abandonment in many-server queues with time-varying arrivals. Oper. Res. 60(6), 1551–1564 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, Y., Whitt, W.: Stabilizing performance in networks of queues with time-varying arrival rates. Probab. Eng. Inf. Sci. 28, 419–449 (2014)

    Article  CAS  MathSciNet  Google Scholar 

  23. Massey, W.A., Whitt, W.: Unstable asymptotics for nonstationary queues. Math. Oper. Res. 19(2), 267–291 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Massey, W.A., Whitt, W.: A stochastic model to capture space and time dynamics in wireless communication systems. Probab. Eng. Inf. Sci. 8, 541–569 (1994)

    Article  Google Scholar 

  25. Massey, W.A., Whitt, W.: Uniform acceleration expansions for Markov chains with time-varying rates. Ann. Appl. Probab. 9(4), 1130–1155 (1997)

    MathSciNet  Google Scholar 

  26. Pang, G., Talreja, R., Whitt, W.: Martingale proofs of many-server heavy-traffic limits for Markovian queues. Probab. Surv. 4, 193–267 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rolski, T.: Queues with nonstationary inputs. Queueing Syst. 5, 113–130 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stidham, S.: A last word on \(L = \lambda W\). Oper. Res. 22, 417–421 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wein, L.M.: Capacity allocation in generalized Jackson networks. Oper. Res. Lett. 8, 143–146 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Whitt, W.: Refining diffusion approximations for queues. Oper. Res. Lett. 1(5), 165–169 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  31. Whitt, W.: Departures from a queue with many busy servers. Math. Oper. Res. 9(4), 534–544 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  32. Whitt, W.: A review of \(L = \lambda W\). Queueing Syst. 9, 235–268 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Whitt, W.: The pointwise stationary approximation for \(M_t/M_t/s\) queues is asymptotically correct as the rates increase. Manag. Sci. 37(3), 307–314 (1991)

    Article  MATH  Google Scholar 

  34. Whitt, W.: Stochastic-Process Limits. Springer, New York (2002)

    MATH  Google Scholar 

  35. Whitt, W.: Heavy-traffic limits for queues with periodic arrival processes. Oper. Res. Lett. 42, 458–461 (2014)

    Article  MathSciNet  Google Scholar 

  36. Wolfe, R.W.: Stochastic Modeling and the Theory of Queues. Prentice-Hall, Englewood Cliffs (1989)

    Google Scholar 

  37. Yom-Tov, G., Mandelbaum, A.: Erlang-R: a time-varying queue with reentrant customers, in support of healthcare staffing. Manuf. Serv. Oper. Manag. 16(2), 283–299 (2014)

    Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges Columbia doctoral student Ni Ma for all reported simulation results and NSF Grant CMMI Grant 1265070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ward Whitt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whitt, W. Stabilizing performance in a single-server queue with time-varying arrival rate. Queueing Syst 81, 341–378 (2015). https://doi.org/10.1007/s11134-015-9462-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-015-9462-x

Keywords

Mathematics Subject Classification

Navigation